833 research outputs found

    Dependence of endothelial cell growth on substrate-bound fibronectin

    Get PDF
    A better understanding of the mechanism of adhesion, spreading and proliferation of human endothelial cells (HEC) on polymeric surfaces may lead to the development of vascular prostheses which allow the formation of an endothelial lining on the luminal surface. In the present investigation the interaction of HEC with polyethylene precoated with monoclonal antibodies directed against HEC membrane antigens and against extracellular matrix compounds was studied. F(ab¿)2 fragments of a monoclonal antibody, directed against an endothelial cell membrane antigen, and F(ab')2 fragments of a monoclonal antibody, directed against cellular fibronectin, were also included in this study. Preadsorption of these antibodies and F(ab')2 fragments, including mixtures of antibodies and mixtures of F(ab')2 fragments, resulted in cell adhesion and spreading as well as moderate cell proliferation (or no proliferation) for several days. However, a good proliferation of HEC was only observed on polyethylene precoated with fibronectin or CLB-HEC-FN-140 (directed against fibronectin). These results strongly suggest that fibronectin, bound to a solid substrate, provides a biochemical signal necessary for the proliferation of HEC. The initial proliferation of HEC on other preadsorbed antibodies or F(ab')2 fragments may be explained by the fact that suspended HEC, used for cell seeding, still possess cell membrane-bound fibronectin

    The role of cellular fibronectin in the interaction of human endothelial cells with polymers

    Get PDF
    During in-vitro adhesion, spreading and proliferation of human endothelial cells (HEC) on tissue culture polystyrene (TCPS), cellular fibronectin is deposited onto the surface of TCPS in spite of the fact that relatively large amounts of proteins have been adsorbed from the serum-containing culture medium to this surface. Evidence is presented that serum proteins, adsorbed to the TCPS surface, are displaced by cellular fibronectin. In addition, the interaction of HEC with polyethylene, precoated with monoclonal antibodies directed against HEC membrane antigens and against extracellular matrix compounds, was studied. F(ab')2 fragments of two monoclonal antibodies were also included in this study. Preadsorption of these antibodies and F(ab')2 fragments resulted in cell adhesion and spreading as well as moderate cell proliferation (or no proliferation) for several days. A good cell proliferation of HEC was only observed on polyethylene precoated with fibronectin or an antibody directed against fibronectin. The results indicate that the direct or indirect deposition of fibronectin is a prerequisite for the proliferation of HEC. It is suggested that fibronectin, bound to a solid substrate, provides a biochemical signal necessary for the proliferation of HEC

    Nonlinear modal interactions in clamped-clamped mechanical resonators

    Full text link
    A theoretical and experimental investigation is presented on the intermodal coupling between the flexural vibration modes of a single clamped-clamped beam. Nonlinear coupling allows an arbitrary flexural mode to be used as a self-detector for the amplitude of another mode, presenting a method to measure the energy stored in a specific resonance mode. Experimentally observed complex nonlinear dynamics of the coupled modes are quantitatively captured by a model which couples the modes via the beam extension; the same mechanism is responsible for the well-known Duffing nonlinearity in clamped-clamped beams.Comment: 5 pages, 3 figure

    Discrete-time quadrature feedback cooling of a radio-frequency mechanical resonator

    Full text link
    We have employed a feedback cooling scheme, which combines high-frequency mixing with digital signal processing. The frequency and damping rate of a 2 MHz micromechanical resonator embedded in a dc SQUID are adjusted with the feedback, and active cooling to a temperature of 14.3 mK is demonstrated. This technique can be applied to GHz resonators and allows for flexible control strategies.Comment: To appear in Appl. Phys. Let

    Fluorescently Labeled Branched Polymers and Thermal Responsive Nanoparticles for Live Cell Imaging

    Get PDF
    Branched poly(methoxy-PEG acrylate) and thermally responsive poly(methoxy-PEG acrylate)-block-poly(N-isopropylacrylamide) are synthesized by RAFT polymerization. After reduction, these polymers are fluorescently labeled by reacting the free thiol groups with N-(5-fluoresceinyl)maleimide. As shown by DLS, the labeled copolymer poly(methoxy-PEG acrylate)-block-poly(N-isopropylacrylamide) forms nanoparticles at body temperature (37 °C) due to the presence of the thermosensitive poly(N-isopropylacrylamide). These materials were used as bioprobes for imaging HUVECs in vitro and chick embryo CAM in vivo. Both labeled polymer and nanoparticles are biocompatible and can be used as efficient fluorescent bioprobe

    Microfluidic Technology in Vascular Research

    Get PDF
    Vascular cell biology is an area of research with great biomedical relevance. Vascular dysfunction is involved in major diseases such as atherosclerosis, diabetes, and cancer. However, when studying vascular cell biology in the laboratory, it is difficult to mimic the dynamic, three-dimensional microenvironment that is found in vivo. Microfluidic technology offers unique possibilities to overcome this difficulty. In this review, an overview of the recent applications of microfluidic technology in the field of vascular biological research will be given. Examples of how microfluidics can be used to generate shear stresses, growth factor gradients, cocultures, and migration assays will be provided. The use of microfluidic devices in studying three-dimensional models of vascular tissue will be discussed. It is concluded that microfluidic technology offers great possibilities to systematically study vascular cell biology with setups that more closely mimic the in vivo situation than those that are generated with conventional methods

    Enzymatic post-crosslinking of printed hydrogels of methacrylated gelatin and tyramine-conjugated 8-arm poly(ethylene glycol) to prepare interpenetrating 3D network structures

    Get PDF
    Methacrylated gelatin (GelMA) has been intensively studied as a 3D printable scaffold material in tissue regeneration fields, which can be attributed to its well-known biological functions. However, the long-term stability of photo-crosslinked GelMA scaffolds is hampered by a combination of its fast degradation in the presence of collagenase and the loss of physical crosslinks at higher temperatures. To increase the longer-term shape stability of printed scaffolds, a mixture of GelMA and tyramine-conjugated 8-arm PEG (8PEGTA) was used to create filaments composed of an interpenetrating network (IPN). Photo-crosslinking during filament deposition of the GelMA and subsequent enzymatic crosslinking of the 8PEGTA were applied to the printed 3D scaffolds. Although both crosslinking mechanisms are radical based, they operate without interference of each other. Rheological data of bulk hydrogels showed that the IPN was an elastic hydrogel, having a storage modulus of 6 kPa, independent of temperature in the range of 10 – 40°C. Tensile and compression moduli were 110 kPa and 80 kPa, respectively. On enzymatic degradation in the presence of collagenase, the gelatin content of the IPN fully degraded in 7 days, leaving a stable secondary crosslinked 8PEGTA network. Using a BioMaker bioprinter, hydrogels without and with human osteosarcoma cells (hMG-63) were printed. On culturing for 21 days, hMG-63 in the GelMA/8PEGTA IPN showed a high cell viability (&gt;90%). Thus, the presence of the photoinitiator, incubation with H2O2, and mechanical forces during printing did not hamper cell viability. This study shows that the GelMA/8PEGTA ink is a good candidate to generate cell-laden bioinks for extrusion-based printing of constructs for tissue engineering applications.</p

    Strong coupling between single-electron tunneling and nano-mechanical motion

    Full text link
    Nanoscale resonators that oscillate at high frequencies are useful in many measurement applications. We studied a high-quality mechanical resonator made from a suspended carbon nanotube driven into motion by applying a periodic radio frequency potential using a nearby antenna. Single-electron charge fluctuations created periodic modulations of the mechanical resonance frequency. A quality factor exceeding 10^5 allows the detection of a shift in resonance frequency caused by the addition of a single-electron charge on the nanotube. Additional evidence for the strong coupling of mechanical motion and electron tunneling is provided by an energy transfer to the electrons causing mechanical damping and unusual nonlinear behavior. We also discovered that a direct current through the nanotube spontaneously drives the mechanical resonator, exerting a force that is coherent with the high-frequency resonant mechanical motion.Comment: Main text 12 pages, 4 Figures, Supplement 13 pages, 6 Figure

    Coupling carbon nanotube mechanics to a superconducting circuit

    Full text link
    The quantum behaviour of mechanical resonators is a new and emerging field driven by recent experiments reaching the quantum ground state. The high frequency, small mass, and large quality-factor of carbon nanotube resonators make them attractive for quantum nanomechanical applications. A common element in experiments achieving the resonator ground state is a second quantum system, such as coherent photons or superconducting device, coupled to the resonators motion. For nanotubes, however, this is a challenge due to their small size. Here, we couple a carbon nanoelectromechanical (NEMS) device to a superconducting circuit. Suspended carbon nanotubes act as both superconducting junctions and moving elements in a Superconducting Quantum Interference Device (SQUID). We observe a strong modulation of the flux through the SQUID from displacements of the nanotube. Incorporating this SQUID into superconducting resonators and qubits should enable the detection and manipulation of nanotube mechanical quantum states at the single-phonon level
    corecore