161 research outputs found

    PFAS fluidize synthetic and bacterial lipid monolayers based on hydrophobicity and lipid charge

    Get PDF
    Poly- and Perfluoroalkyl substances (PFASs) are pollutants of emerging concern that persist in nature and pose environmental health and safety risks. PFAS disrupt biological membranes resulting in cellular inhibition, but the mechanism of disruption and the role of lipid composition remain unclear. We examine the role of phospholipid saturation and headgroup charge on the interactions between PFASs and phospholipid monolayers comprised of synthetic phosphocholine (PC) and phosphoglycerol (PG) lipids and prepared from bacteria membrane extracts rich in PG lipids from an environmentally relevant marine bacterium Alcanivorax borkumensis. When deposited on a buffered subphase containing PFAS, PFAS mixed within and fluidized zwitterionic and net-anionic monolayers leading to increases in monolayer compressibility that were driven by a combination of PFAS hydrophobicity and monolayer charge density. Differences in the monolayer response using saturated or unsaturated lipids are attributed to the ability of the unsaturated lipids to accommodate PFAS within ‘void space’ arising from the bent lipid tails. Similar fluidization and compressibility behavior were also observed in A. borkumensis lipid monolayers. This work provides new insight into PFAS partitioning into bacterial membranes and the effect PFAS have on the physicomechanical properties of zwitterionic and charged lipid monolayers

    Infrared Characterisation and Prediction of Aviation Turbine Fuel Plume

    Get PDF
    Broad (3.7 μm - 4.8 μm) as well as narrow band (4.16 μm - 4.24 μm) mid wave infrared characterisation of plume has been reported here. Multiple angular measurements (azimuth) were carried out on a laboratory developed plume source with aviation turbine fuel (ATF) using thermal imaging systems. Correlation of IR prediction to experimental results is the key objectives of this study. As this narrow band covers the blue spike of plume, a comparison of the same with broad band plume contribution has been reported for the first time. Also, a model to simulate the IR radiation of two-dimensional parabolic jet was developed and used to predict spectral contribution from major hydrocarbon fuel combustion products (CO2 and H2O). In addition, it was found that the plume transmission characteristics extracted form imager measurements are qualitatively in agreement with prediction results.

    Emergence of New Materials for Exploiting Highly Efficient Carrier Multiplication in Photovoltaics

    Full text link
    In conventional solar cell semiconductor materials (predominantly Si) photons with energy higher than the band gap initially generate hot electrons and holes, which subsequently cool down to the band edge by phonon emission. Due to the latter process, the energy of the charge carriers in excess of the band gap is lost as heat and does not contribute to the conversion of solar to electrical power. If the excess energy is more than the band gap it can in principle be utilized through a process known as carrier multiplication (CM) in which a single absorbed photon generates two (or more) pairs of electrons and holes. Thus, through CM the photon energy above twice the band gap enhances the photocurrent of a solar cell. In this review, we discuss recent progress in CM research in terms of fundamental understanding, emergence of new materials for efficient CM, and CM based solar cell applications. Based on our current understanding, the CM threshold can get close to the minimal value of twice the band gap in materials where a photon induces an asymmetric electronic transition from a deeper valence band or to a higher conduction band. In addition, the material must have a low exciton binding energy and high charge carrier mobility, so that photoexcitation leads directly to the formation of free charges that can readily be extracted at external electrodes of a photovoltaic device. Percolative networks of coupled PbSe quantum dots, Sn/Pb based halide perovskites, and transition metal dichalcogenides such as MoTe2 fulfill these requirements to a large extent. These findings point towards promising prospects for further development of new materials for highly efficient photovoltaics

    Ultra-brief non-expert-delivered defusion and acceptance exercises for food cravings: A partial replication study

    Get PDF
    Food cravings are a common barrier to losing weight. This paper presents a randomised comparison of non-expert group-delivered ultra-brief defusion and acceptance interventions against a distraction control. Sixty-three participants were asked to carry a bag of chocolates for a week whilst trying to resist the temptation to eat them. A behavioural rebound measure was administered. Each intervention out-performed control in respect of consumption, but not cravings. These techniques may have a place in the clinical management of food cravings. We provide tentative evidence that the mechanism of action is through decreased reactivity to cravings, not through reduced frequency of cravings

    Photon recycling in CsPbBr3 All-Inorganic Perovskite Nanocrystals

    Get PDF
    Photon recycling, the iterative process of re-absorption and re-emission of photons in an absorbing medium, can play an important role in the power-conversion efficiency of photovoltaic cells. To date, several studies have proposed that this process may occur in bulk or thin films of inorganic lead-halide perovskites, but conclusive proof of the occurrence and magnitude of this effect is missing. Here, we provide clear evidence and quantitative estimation of photon recycling in CsPbBr nanocrystal suspensions by combining measurements of steady-state and time-resolved photoluminescence (PL) and PL quantum yield with simulations of photon diffusion through the suspension. The steady-state PL shows clear spectral modifications including red shifts and quantum yield decrease, while the time-resolved measurements show prolonged PL decay and rise times. These effects grow as the nanocrystal concentration and distance traveled through the suspension increase. Monte Carlo simulations of photons diffusing through the medium and exhibiting absorption and re-emission account quantitatively for the observed trends and show that up to five re-emission cycles are involved. We thus identify 4 quantifiable measures, PL red shift, PL QY, PL decay time, and PL rise time that together all point toward repeated, energy-directed radiative transfer between nanocrystals. These results highlight the importance of photon recycling for both optical properties and photovoltaic applications of inorganic perovskite nanocrystals

    Lymphocyte subsets in human immunodeficiency virus-unexposed Brazilian individuals from birth to adulthood

    Get PDF
    Ethnic origin, genetics, gender and environmental factors have been shown to influence some immunologic indices, so that development of reference values for populations of different backgrounds may be necessary. We have determined the distribution of lymphocyte subsets in healthy Brazilian individuals from birth to adulthood. Lymphocyte subsets were determined using four-colour cytometry in a cross-sectional study of 463 human immunodeficiency virus-unexposed children and adults from birth through 49 years of age. Lymphocyte subsets varied according to age, as previously observed in other studies. However, total CD4+ T cell numbers were lower than what was described in the Pediatric AIDS Clinical Trials Group P1009 (PACTG P1009), which assessed an American population of predominantly African and Hispanic backgrounds until the 12-18 year age range, when values were comparable. Naïve percentages and absolute values of CD8+ T cells, as assessed by CD45RA expression, were also lower than the PACTG P1009 data for all analysed age ranges. CD38 expression on both CD4+ and CD8+ T cells was lower than the PACTG P1009 values, with a widening gap between the two studies at older age ranges. Different patterns of cell differentiation seem to occur in different settings and may have characteristic expression within each population.Universidade Federal de São Paulo (UNIFESP) Departamento de MedicinaCentro Assistencial Cruz de MaltaUniversidade Federal de São Paulo (UNIFESP) Departamento de PediatriaUNIFESP, Depto. de MedicinaUNIFESP, Depto. de PediatriaSciEL

    In Situ Distribution of HIV-Binding CCR5 and C-Type Lectin Receptors in the Human Endocervical Mucosa

    Get PDF
    The endocervical mucosa is believed to be a primary site of HIV transmission. However, to date there is little known about the distribution of the HIV co-receptor CCR5 and the HIV-binding C-type lectin receptors, including Langerin, dendritic cell (DC)-specific intercellular adhesion molecule-grabbing non-integrin (DC-SIGN) and mannose receptor (MR) at this site. We therefore characterized the expression of these molecules in the endocervix of HIV seronegative women by computerized image analysis. Endocervical tissue biopsies were collected from women (n = 6) undergoing hysterectomy. All study individuals were diagnosed with benign and non-inflammatory diseases. CCR5+ CD4+ CD3+ T cells were found within or adjacent to the endocervical epithelium. The C-type lectin Langerin was expressed by intraepithelial CD1a+ CD4+ and CD11c+ CD4+ Langerhans cells, whereas DC-SIGN+ MR+ CD11c myeloid dendritic cells and MR+ CD68+ macrophages were localized in the submucosa of the endocervix. The previously defined immune effector cells including CD8+, CD56+, CD19+ and IgD+ cells were also found in the submucosa as well as occasional CD123+ BDCA-2+ plasmacytoid dendritic cells. Understanding the spatial distribution of potential HIV target cells and immune effector cells in relation to the endocervical canal forms a basis for deciphering the routes of HIV transmission events in humans as well as designing HIV-inhibiting compounds

    Pathogen-Induced Proapoptotic Phenotype and High CD95 (Fas) Expression Accompany a Suboptimal CD8+ T-Cell Response: Reversal by Adenoviral Vaccine

    Get PDF
    MHC class Ia-restricted CD8+ T cells are important mediators of the adaptive immune response against infections caused by intracellular microorganisms. Whereas antigen-specific effector CD8+ T cells can clear infection caused by intracellular pathogens, in some circumstances, the immune response is suboptimal and the microorganisms survive, causing host death or chronic infection. Here, we explored the cellular and molecular mechanisms that could explain why CD8+ T cell-mediated immunity during infection with the human protozoan parasite Trypanosoma cruzi is not optimal. For that purpose, we compared the CD8+ T-cell mediated immune responses in mice infected with T. cruzi or vaccinated with a recombinant adenovirus expressing an immunodominant parasite antigen. Several functional and phenotypic characteristics of specific CD8+ T cells overlapped. Among few exceptions was an accelerated expansion of the immune response in adenoviral vaccinated mice when compared to infected ones. Also, there was an upregulated expression of the apoptotic-signaling receptor CD95 on the surface of specific T cells from infected mice, which was not observed in the case of adenoviral-vaccinated mice. Most importantly, adenoviral vaccine provided at the time of infection significantly reduced the upregulation of CD95 expression and the proapoptotic phenotype of pathogen-specific CD8+ cells expanded during infection. In parallel, infected adenovirus-vaccinated mice had a stronger CD8 T-cell mediated immune response and survived an otherwise lethal infection. We concluded that a suboptimal CD8+ T-cell response is associated with an upregulation of CD95 expression and a proapoptotic phenotype. Both can be blocked by adenoviral vaccination
    • …
    corecore