6,474 research outputs found
Enhanced superconductivity and lattice instability in Nb-Rh alloys
Superconductivity with transition temperature above 10 °K has been observed in a new Nb-Rh intermediate phase. The new metastable phase is obtained by liquid quenching the binary alloy or by the addition of a small percentage of carbon to form a stable ternary alloy
Potential one-forms for hyperk\"ahler structures with torsion
It is shown that an HKT-space with closed parallel potential 1-form has
-symmetry. Every locally conformally hyperk\"ahler manifold
generates this type of geometry. The HKT-spaces with closed parallel potential
1-form arising in this way are characterized by their symmetries and an
inhomogeneous cubic condition on their torsion.Comment: 16 pages, Latex, no figure
Magnetic and transport properties of amorphous ferro magnetic Gd-Au, Gd-Ni and Gd-Co alloys obtained by splat-cooling
We present the results of magnetization and transport measurements on amorphous Gd_(80)Au_(20), Gd_(68)Ni_(32) and Gd_(67)Co_(33) alloys over a temperature range of 1.8-300°K in fields up to 75 kOe. These ferromagnetic alloys obtained by splat-cooling have Curie temperatures Tcof 150, 125 and 175°K, respectively. The saturation moment per Gd atom extrapolated to 0°K is estimated to be 7± 0.1 μB. The exchange integrals for Gd-Au and Gd-Ni are determined from the value of Tcand from the temperature dependence of the saturation magnetization. The zero-field resistivity for Gd-Ni and Gd-Co exhibits maxima around Tc. We present some preliminary results of magnetoresistivity measurements with applied field parallel and perpendicular to the foil plane. The anisotropy is in-plane for Gd-Co. For the Gd-Au and Gd-Ni alloys, there is no well-defined easy axis
Review of Solar and Reactor Neutrinos
Over the last several years, experiments have conclusively demonstrated that
neutrinos are massive and that they mix. There is now direct evidence for
s from the Sun transforming into other active flavors while en route to
the Earth. The disappearance of reactor s, predicted under the
assumption of neutrino oscillation, has also been observed. In this paper,
recent results from solar and reactor neutrino experiments and their
implications are reviewed. In addition, some of the future experimental
endeavors in solar and reactor neutrinos are presented.Comment: Proceedings of the XXII International Symposium on Lepton and Photon
Interactions at High Energy (Lepton-Photon 2005, June 30 to July 5, 2005,
Uppsala, Sweden). 11 figures, 5 table
Functional specialization of the yeast Rho1 GTP exchange factors
Rho GTPases are regulated in complex spatiotemporal patterns that may be dependent, in part at least, on the multiplicity of their GTP exchange factors (GEFs). Here, we examine the extent of and basis for functional specialization of the Rom2 and Tus1 GEFs that activate the yeast Rho1 GTPase, the ortholog of mammalian RhoA. First, we find that these GEFs selectively activate different Rho1-effector branches. Second, the synthetic genetic networks around ROM2 and TUS1 confirm very different global in vivo roles for these GEFs. Third, the GEFs are not functionally interchangeable: Tus1 cannot replace the essential role of Rom2, even when overexpressed. Fourth, we find that Rom2 and Tus1 localize differently: Rom2 to the growing bud surface and to the bud neck at cytokinesis; Tus1 only to the bud neck but in a distinct pattern. Finally, we find that these GEFs are dependent on different protein co-factors: Rom2 function and localization is largely dependent on Ack1, a SEL1 domain containing protein; Tus1 function and localization is largely dependent on the Tus1-interacting protein Ypl066w (which we name Rgl1). We have revealed a surprising level of diversity among the Rho1 GEFs that contributes another level of complexity to the spatiotemporal control of Rho1
Cellular solid behaviour of liquid crystal colloids. 1. Phase separation and morphology
We study the phase ordering colloids suspended in a thermotropic nematic
liquid crystal below the clearing point Tni and the resulting aggregated
structure. Small (150nm) PMMA particles are dispersed in a classical liquid
crystal matrix, 5CB or MBBA. With the help of confocal microscopy we show that
small colloid particles densely aggregate on thin interfaces surrounding large
volumes of clean nematic liquid, thus forming an open cellular structure, with
the characteristic size of 10-100 micron inversely proportional to the colloid
concentration. A simple theoretical model, based on the Landau mean-field
treatment, is developed to describe the continuous phase separation and the
mechanism of cellular structure formation.Comment: Latex 2e (EPJ style) EPS figures included (poor quality to comply
with space limitations
Planar immersion lens with metasurfaces
The solid immersion lens is a powerful optical tool that allows light
entering material from air or vacuum to focus to a spot much smaller than the
free-space wavelength. Conventionally, however, they rely on semispherical
topographies and are non-planar and bulky, which limits their integration in
many applications. Recently, there has been considerable interest in using
planar structures, referred to as metasurfaces, to construct flat optical
components for manipulating light in unusual ways. Here, we propose and
demonstrate the concept of a planar immersion lens based on metasurfaces. The
resulting planar device, when placed near an interface between air and
dielectric material, can focus electromagnetic radiation incident from air to a
spot in material smaller than the free-space wavelength. As an experimental
demonstration, we fabricate an ultrathin and flexible microwave lens and
further show that it achieves wireless energy transfer in material mimicking
biological tissue
- …