1,108 research outputs found

    Protein crystallization in vivo

    Full text link
    Protein crystallization in vivo provides some fascinating examples of biological self-assembly. Here, we provide a selective survey to show the diversity of functions for which protein crystals are used, and the physical properties of the crystals thatare exploited. Where known, we emphasize how the nature of the protein-protein interactions leads to control of the crystallization behaviour.Comment: 17 pages, 1 figur

    Finding bridges in packings of colloidal spheres

    Get PDF
    We identify putative load-bearing structures (bridges) in experimental colloidal systems studied by confocal microscopy. Bridges are co-operative structures that have been used to explain stability and inhomogeneous force transmission in simulated granular packings with a range of densities. We show that bridges similar to those found in granular simulations are present in real experimental colloidal packings. We describe critically the bridge-finding procedure for real experimental data and propose a new criterion-Lowest Mean Squared Separation (LSQS)-for selecting optimum stabilisations

    Is there a distinctive quantum theology?

    Get PDF

    Potential roles of abundant extracellular chaperones in the control of amyloid formation and toxicity

    Get PDF
    The in vivo formation of fibrillar proteinaceous deposits called amyloid is associated with more than 40 serious human diseases, collectively referred to as protein deposition diseases. In many cases the amyloid deposits are extracellular and are found associated with newly identified abundant extracellular chaperones (ECs). Evidence is presented suggesting an important regulatory role for ECs in amyloid formation and disposal in the body. A model is presented which proposes that, under normal conditions, ECs stabilize extracellular misfolded proteins by binding to them, and then guide them to specific cell receptors for uptake and subsequent degradation. Thus ECs and their receptors may be critical parts of a quality control system to protect the body against dangerously hydrophobic proteins/peptides. However, it also appears possible that in the presence of a high molar excess of misfolded protein, such as might occur during disease, the limited amounts of ECs available may actually exacebate pathology. Further advances in understanding of the mechanisms that control extracellular protein folding are likely to identify new strategies for effective disease therapies

    Force chains and networks: wet suspensions through dry granular eyes

    Get PDF
    • …
    corecore