6 research outputs found

    Photonic molecules and spectral engineering

    Full text link
    This chapter reviews the fundamental optical properties and applications of pho-tonic molecules (PMs) - photonic structures formed by electromagnetic coupling of two or more optical microcavities (photonic atoms). Controllable interaction between light and matter in photonic atoms can be further modified and en-hanced by the manipulation of their mutual coupling. Mechanical and optical tunability of PMs not only adds new functionalities to microcavity-based optical components but also paves the way for their use as testbeds for the exploration of novel physical regimes in atomic physics and quantum optics. Theoretical studies carried on for over a decade yielded novel PM designs that make possible lowering thresholds of semiconductor microlasers, producing directional light emission, achieving optically-induced transparency, and enhancing sensitivity of microcavity-based bio-, stress- and rotation-sensors. Recent advances in material science and nano-fabrication techniques make possible the realization of optimally-tuned PMs for cavity quantum electrodynamic experiments, classical and quantum information processing, and sensing.Comment: A review book chapter: 29 pages, 19 figure

    Wavelength-Selective Reflector Based on a Circular Array of Coupled Microring Resonators

    No full text

    Polymer microring coupled-resonator optical waveguides

    No full text

    Tunable single-mode coupled-cavity laser in a standard InP photonics platform

    No full text
    We present a wavelength tunable, coupled-cavity laser in a standard indium phosphide multiproject wafer shuttle which did not support distributed feedback gratings. The single-mode operation was enabled by reflections from slots in the laser cavity. The wavelength of the laser emission was tunable over 20 nm near a wavelength of 1560 nm via the currents applied to each section of the laser. A maximum side-mode suppression ratio of 46 dB was observed. The delayed self-heterodyne spectrum of the laser showed a Voigt line shape, corresponding to optical linewidths of 3.7 MHz for the Lorentzian and 88 MHz for the Gaussian contributions
    corecore