47 research outputs found

    Know Your Current Ih: Interaction with a Shunting Current Explains the Puzzling Effects of Its Pharmacological or Pathological Modulations

    Get PDF
    The non-specific, hyperpolarization activated, Ih current is particularly involved in epilepsy and it exhibits an excitatory or inhibitory action on synaptic integration in an apparently inconsistent way. It has been suggested that most of the inconsistencies could be reconciled invoking an indirect interaction with the M-type K+ current, another current involved in epilepsy. However, here we show that the original experiments, and the simplified model used to explain and support them, cannot explain in a conclusive way the puzzling Ih actions observed in different experimental preparations. Using a realistic model, we show instead how and why a shunting current, such as that carried by TASK-like channels, and dependent on Ih channel is able to explain virtually all experimental findings on Ih up- or down-regulation by modulators or pathological conditions. The model results suggest several experimentally testable predictions to characterize in more details this elusive and peculiar interaction, which may be of fundamental importance in the development of new treatments for all those pathological and cognitive dysfunctions caused, mediated, or affected by Ih

    The cGMP-Dependent Protein Kinase II Is an Inhibitory Modulator of the Hyperpolarization-Activated HCN2 Channel

    Get PDF
    Opening of hyperpolarization-activated cyclic nucleotide-gated (HCN) channels is facilitated by direct binding of cyclic nucleotides to a cyclic nucleotide-binding domain (CNBD) in the C-terminus. Here, we show for the first time that in the HCN2 channel cGMP can also exert an inhibitory effect on gating via cGMP-dependent protein kinase II (cGKII)-mediated phosphorylation. Using coimmunoprecipitation and immunohistochemistry we demonstrate that cGKII and HCN2 interact and colocalize with each other upon heterologous expression as well as in native mouse brain. We identify the proximal C-terminus of HCN2 as binding region of cGKII and show that cGKII phosphorylates HCN2 at a specific serine residue (S641) in the C-terminal end of the CNBD. The cGKII shifts the voltage-dependence of HCN2 activation to 2–5 mV more negative voltages and, hence, counteracts the stimulatory effect of cGMP on gating. The inhibitory cGMP effect can be either abolished by mutation of the phosphorylation site in HCN2 or by impairing the catalytic domain of cGKII. By contrast, the inhibitory effect is preserved in a HCN2 mutant carrying a CNBD deficient for cGMP binding. Our data suggest that bidirectional regulation of HCN2 gating by cGMP contributes to cellular fine-tuning of HCN channel activity

    Errors in the measurement of voltage-activated ion channels in cell-attached patch-clamp recordings

    Get PDF
    Patch-clamp recording techniques have revolutionized understanding of the function and sub-cellular location of ion channels in excitable cells. The cell-attached patch-clamp configuration represents the method of choice to describe the endogenous properties of voltage-activated ion channels in the axonal, somatic and dendritic membrane of neurons, without disturbance of the intracellular milieu. Here, we directly examine the errors associated with cell-attached patch-clamp measurement of ensemble ion channel activity. We find for a number of classes of voltage-activated channels, recorded from the soma and dendrites of neurons in acute brain-slices and isolated cells, that the amplitude and kinetics of ensemble ion channel activity recorded in cell-attached patches is significantly distorted by transmembrane voltage changes generated by the flow of current through the activated ion channels. We outline simple error–correction procedures that allow a more accurate description of the density and properties of voltage-activated channels to be incorporated into computational models of neurons

    Ih-mediated depolarization enhances the temporal precision of neuronal integration

    Get PDF
    Feed-forward inhibition mediated by ionotropic GABAA receptors contributes to the temporal precision of neuronal signal integration. These receptors exert their inhibitory effect by shunting excitatory currents and by hyperpolarizing neurons. The relative roles of these mechanisms in neuronal computations are, however, incompletely understood. In this study, we show that by depolarizing the resting membrane potential relative to the reversal potential for GABAA receptors, the hyperpolarization-activated mixed cation current (Ih) maintains a voltage gradient for fast synaptic inhibition in hippocampal pyramidal cells. Pharmacological or genetic ablation of Ih broadens the depolarizing phase of afferent synaptic waveforms by hyperpolarizing the resting membrane potential. This increases the integration time window for action potential generation. These results indicate that the hyperpolarizing component of GABAA receptor-mediated inhibition has an important role in maintaining the temporal fidelity of coincidence detection and suggest a previously unrecognized mechanism by which Ih modulates information processing in the hippocampus

    Enhancement Effects of Martentoxin on Glioma BK Channel and BK Channel (α+β1) Subtypes

    Get PDF
    BACKGROUND: BK channels are usually activated by membrane depolarization and cytoplasmic Ca(2+). Especially,the activity of BK channel (α+β4) can be modulated by martentoxin, a 37 residues peptide, with Ca(2+)-dependent manner. gBK channel (glioma BK channel) and BK channel (α+β1) possessed higher Ca(2+) sensitivity than other known BK channel subtypes. METHODOLOGY AND PRINCIPAL FINDINGS: The present study investigated the modulatory characteristics of martentoxin on these two BK channel subtypes by electrophysiological recordings, cell proliferation and Ca(2+) imaging. In the presence of cytoplasmic Ca(2+), martentoxin could enhance the activities of both gBK and BK channel (α+β1) subtypes in dose-dependent manner with EC(50) of 46.7 nM and 495 nM respectively, while not shift the steady-state activation of these channels. The enhancement ratio of martentoxin on gBK and BK channel (α+β1) was unrelated to the quantitative change of cytoplasmic Ca(2+) concentrations though the interaction between martentoxin and BK channel (α+β1) was accelerated under higher cytoplasmic Ca(2+). The selective BK pore blocker iberiotoxin could fully abolish the enhancement of these two BK subtypes induced by martentoxin, suggesting that the auxiliary β subunit might contribute to the docking for martentoxin. However, in the absence of cytoplasmic Ca(2+), the activity of gBK channel would be surprisingly inhibited by martentoxin while BK channel (α+β1) couldn't be affected by the toxin. CONCLUSIONS AND SIGNIFICANCE: Thus, the results shown here provide the novel evidence that martentoxin could increase the two Ca(2+)-hypersensitive BK channel subtypes activities in a new manner and indicate that β subunit of these BK channels plays a vital role in this enhancement by martentoxin

    Multiple-Color Optical Activation, Silencing, and Desynchronization of Neural Activity, with Single-Spike Temporal Resolution

    Get PDF
    The quest to determine how precise neural activity patterns mediate computation, behavior, and pathology would be greatly aided by a set of tools for reliably activating and inactivating genetically targeted neurons, in a temporally precise and rapidly reversible fashion. Having earlier adapted a light-activated cation channel, channelrhodopsin-2 (ChR2), for allowing neurons to be stimulated by blue light, we searched for a complementary tool that would enable optical neuronal inhibition, driven by light of a second color. Here we report that targeting the codon-optimized form of the light-driven chloride pump halorhodopsin from the archaebacterium Natronomas pharaonis (hereafter abbreviated Halo) to genetically-specified neurons enables them to be silenced reliably, and reversibly, by millisecond-timescale pulses of yellow light. We show that trains of yellow and blue light pulses can drive high-fidelity sequences of hyperpolarizations and depolarizations in neurons simultaneously expressing yellow light-driven Halo and blue light-driven ChR2, allowing for the first time manipulations of neural synchrony without perturbation of other parameters such as spiking rates. The Halo/ChR2 system thus constitutes a powerful toolbox for multichannel photoinhibition and photostimulation of virally or transgenically targeted neural circuits without need for exogenous chemicals, enabling systematic analysis and engineering of the brain, and quantitative bioengineering of excitable cells

    High-Pass Filtering of Input Signals by the Ih Current in a Non-Spiking Neuron, the Retinal Rod Bipolar Cell

    Get PDF
    Hyperpolarization–activated cyclic nucleotide–sensitive (HCN) channels mediate the If current in heart and Ih throughout the nervous system. In spiking neurons Ih participates primarily in different forms of rhythmic activity. Little is known, however, about its role in neurons operating with graded potentials as in the retina, where all four channel isoforms are expressed. Intriguing evidence for an involvement of Ih in early visual processing are the side effects reported, in dim light or darkness, by cardiac patients treated with HCN inhibitors. Moreover, electroretinographic recordings indicate that these drugs affect temporal processing in the outer retina. Here we analyzed the functional role of HCN channels in rod bipolar cells (RBCs) of the mouse. Perforated–patch recordings in the dark–adapted slice found that RBCs exhibit Ih, and that this is sensitive to the specific blocker ZD7288. RBC input impedance, explored by sinusoidal frequency–modulated current stimuli (0.1–30 Hz), displays band–pass behavior in the range of Ih activation. Theoretical modeling and pharmacological blockade demonstrate that high–pass filtering of input signals by Ih, in combination with low–pass filtering by passive properties, fully accounts for this frequency–tuning. Correcting for the depolarization introduced by shunting through the pipette–membrane seal, leads to predict that in darkness Ih is tonically active in RBCs and quickens their responses to dim light stimuli. Immunohistochemistry targeting candidate subunit isoforms HCN1–2, in combination with markers of RBCs (PKC) and rod–RBC synaptic contacts (bassoon, mGluR6, Kv1.3), suggests that RBCs express HCN2 on the tip of their dendrites. The functional properties conferred by Ih onto RBCs may contribute to shape the retina's light response and explain the visual side effects of HCN inhibitors
    corecore