24 research outputs found

    The Membrane Fusion Step of Vaccinia Virus Entry Is Cooperatively Mediated by Multiple Viral Proteins and Host Cell Components

    Get PDF
    For many viruses, one or two proteins allow cell attachment and entry, which occurs through the plasma membrane or following endocytosis at low pH. In contrast, vaccinia virus (VACV) enters cells by both neutral and low pH routes; four proteins mediate cell attachment and twelve that are associated in a membrane complex and conserved in all poxviruses are dedicated to entry. The aim of the present study was to determine the roles of cellular and viral proteins in initial stages of entry, specifically fusion of the membranes of the mature virion and cell. For analysis of the role of cellular components, we used well characterized inhibitors and measured binding of a recombinant VACV virion containing Gaussia luciferase fused to a core protein; viral and cellular membrane lipid mixing with a self-quenching fluorescent probe in the virion membrane; and core entry with a recombinant VACV expressing firefly luciferase and electron microscopy. We determined that inhibitors of tyrosine protein kinases, dynamin GTPase and actin dynamics had little effect on binding of virions to cells but impaired membrane fusion, whereas partial cholesterol depletion and inhibitors of endosomal acidification and membrane blebbing had a severe effect at the later stage of core entry. To determine the role of viral proteins, virions lacking individual membrane components were purified from cells infected with members of a panel of ten conditional-lethal inducible mutants. Each of the entry protein-deficient virions had severely reduced infectivity and except for A28, L1 and L5 greatly impaired membrane fusion. In addition, a potent neutralizing L1 monoclonal antibody blocked entry at a post-membrane lipid-mixing step. Taken together, these results suggested a 2-step entry model and implicated an unprecedented number of viral proteins and cellular components involved in signaling and actin rearrangement for initiation of virus-cell membrane fusion during poxvirus entry

    A Virus-Encoded Cell–Cell Fusion Machine Dependent on Surrogate Adhesins

    Get PDF
    The reovirus fusion-associated small transmembrane (FAST) proteins function as virus-encoded cellular fusogens, mediating efficient cell–cell rather than virus–cell membrane fusion. With ectodomains of only ∼20–40 residues, it is unclear how such diminutive viral fusion proteins mediate the initial stages (i.e. membrane contact and close membrane apposition) of the fusion reaction that precede actual membrane merger. We now show that the FAST proteins lack specific receptor-binding activity, and in their natural biological context of promoting cell–cell fusion, rely on cadherins to promote close membrane apposition. The FAST proteins, however, are not specifically reliant on cadherin engagement to mediate membrane apposition as indicated by their ability to efficiently utilize other adhesins in the fusion reaction. Results further indicate that surrogate adhesion proteins that bridge membranes as close as 13 nm apart enhance FAST protein-induced cell–cell fusion, but active actin remodelling is required for maximal fusion activity. The FAST proteins are the first example of membrane fusion proteins that have specifically evolved to function as opportunistic fusogens, designed to exploit and convert naturally occurring adhesion sites into fusion sites. The capacity of surrogate, non-cognate adhesins and active actin remodelling to enhance the cell–cell fusion activity of the FAST proteins are features perfectly suited to the structural and functional evolution of these fusogens as the minimal fusion component of a virus-encoded cellular fusion machine. These results also provide a basis for reconciling the rudimentary structure of the FAST proteins with their capacity to fuse cellular membranes

    Roles of Small GTPase Rac1 in the Regulation of Actin Cytoskeleton during Dengue Virus Infection

    Get PDF
    An important clinical characteristic of dengue hemorrhagic fever/dengue shock syndrome is increased vascular permeability. Actin cytoskeleton is a significant element of endothelial barrier function regulation. In vitro study showed that dengue virus infection could induce redistributions of actin cytoskeleton. It is not precisely clear the roles of actin and the mechanisms of its reorganization during the infection. Using immunochemical assays, drug inhibition assays and protein interaction profiling methods, we aimed to identify the ways in which dengue virus serotype 2 interacts with actin cytoskeleton. The study showed that dynamic treadmilling of actin is necessary for dengue virus entry, production and release, while small GTPase Rac1 also plays multiple roles during these processes. In addition, we demonstrated the association of viral E protein with actin, indicating a direct effect of viral protein on the structural modifications of actin cytoskeleton. Our results provide evidence for the participation of Rac1 signaling pathways in viral protein-induced actin reorganizations, which may be a mechanism involved in the etiology of dengue hemorrhagic fever

    Actin Cytoskeletal Reorganizations and Coreceptor-Mediated Activation of Rac during Human Immunodeficiency Virus-Induced Cell Fusion

    No full text
    The membrane fusion events which initiate human immunodeficiency virus type 1 (HIV-1) infection and promote cytopathic syncytium formation in infected cells commence with the binding of the HIV envelope glycoprotein (Env) to CD4 and an appropriate coreceptor. Here, we show that HIV Env-coreceptor interactions activate Rac-1 GTPase and stimulate the actin filament network reorganizations that are requisite components of the cell fusion process. Disrupting actin filament dynamics with jasplakinolide or latrunculin A arrested fusion at a late step in the formation of Env-CD4-coreceptor complexes. Time-lapse confocal microscopy of living cells revealed vigorous activity of actin-based, target cell membrane extensions at the target cell-Env-expressing cell interface. The expression of dominant-negative forms of actin-regulating Rho-family GTPases established that HIV Env-mediated syncytium formation relies on Rac-1 but not on Cdc42 or Rho activation in target cells. Similar dependencies were found when cell fusion was induced by Env expressed on viral or cellular membranes. Additionally, Rac activity was specifically upregulated in a coreceptor-dependent manner in fusion reaction cell lysates. These results define a role for HIV Env-coreceptor interactions in activating the cellular factors essential for virus-cell and cell-cell fusion and provide evidence for the participation of pertussis toxin-insensitive signaling pathways in HIV-induced membrane fusion

    Human Immunodeficiency Virus Type 1 Coreceptor Switching: V1/V2 Gain-of-Fitness Mutations Compensate for V3 Loss-of-Fitness Mutations

    No full text
    Human immunodeficiency virus type 1 (HIV-1) entry into target cells is mediated by the virus envelope binding to CD4 and the conformationally altered envelope subsequently binding to one of two chemokine receptors. HIV-1 envelope glycoprotein (gp120) has five variable loops, of which three (V1/V2 and V3) influence the binding of either CCR5 or CXCR4, the two primary coreceptors for virus entry. Minimal sequence changes in V3 are sufficient for changing coreceptor use from CCR5 to CXCR4 in some HIV-1 isolates, but more commonly additional mutations in V1/V2 are observed during coreceptor switching. We have modeled coreceptor switching by introducing most possible combinations of mutations in the variable loops that distinguish a previously identified group of CCR5- and CXCR4-using viruses. We found that V3 mutations entail high risk, ranging from major loss of entry fitness to lethality. Mutations in or near V1/V2 were able to compensate for the deleterious V3 mutations and may need to precede V3 mutations to permit virus survival. V1/V2 mutations in the absence of V3 mutations often increased the capacity of virus to utilize CCR5 but were unable to confer CXCR4 use. V3 mutations were thus necessary but not sufficient for coreceptor switching, and V1/V2 mutations were necessary for virus survival. HIV-1 envelope sequence evolution from CCR5 to CXCR4 use is constrained by relatively frequent lethal mutations, deep fitness valleys, and requirements to make the right amino acid substitution in the right place at the right time
    corecore