662 research outputs found

    A Critical Cosmological Constant from Millimeter Extra Dimensions

    Full text link
    We consider `brane universe' scenarios with standard-model fields localized on a 3-brane in 6 spacetime dimensions. We show that if the spacetime is rotationally symmetric about the brane, local quantities in the bulk are insensitive to the couplings on the brane. This potentially allows compactifications where the effective 4-dimensional cosmological constant is independent of the couplings on the 3-brane. We consider several possible singularity-free compactification mechanisms, and find that they do not maintain this property. We also find solutions with naked spacetime singularities, and we speculate that new short-distance physics can become important near the singularities and allow a compactification with the desired properties. The picture that emerges is that standard-model loop contributions to the effective 4-dimensional cosmological constant can be cut off at distances shorter than the compactification scale. At shorter distance scales, renormalization effects due to standard-model fields renormalize the 3-brane tension, which changes a deficit angle in the transverse space without affecting local quantities in the bulk. For a compactification scale of order 10^{-2} mm, this gives a standard-model contribution to the cosmological constant in the range favored by cosmology.Comment: 15 pages, LaTeX2e. Major revisions; see abstrac

    Realistic Anomaly-mediated Supersymmetry Breaking

    Get PDF
    We consider supersymmetry breaking communicated entirely by the superconformal anomaly in supergravity. This scenario is naturally realized if supersymmetry is broken in a hidden sector whose couplings to the observable sector are suppressed by more than powers of the Planck scale, as occurs if supersymmetry is broken in a parallel universe living in extra dimensions. This scenario is extremely predictive: soft supersymmetry breaking couplings are completely determined by anomalous dimensions in the effective theory at the weak scale. Gaugino and scalar masses are naturally of the same order, and flavor-changing neutral currents are automatically suppressed. The most glaring problem with this scenario is that slepton masses are negative in the minimal supersymmetric standard model. We point out that this problem can be simply solved by coupling extra Higgs doublets to the leptons. Lepton flavor-changing neutral currents can be naturally avoided by approximate symmetries. We also describe more speculative solutions involving compositeness near the weak scale. We then turn to electroweak symmetry breaking. Adding an explicit \mu term gives a value for B\mu that is too large by a factor of order 100. We construct a realistic model in which the \mu term arises from the vacuum expectation value of a singlet field, so all weak-scale masses are directly related to m_{3/2}. We show that fully realistic electroweak symmetry breaking can occur in this model with moderate fine-tuning.Comment: 32 pages, LaTeX2e, 3 eps figure

    On the one-loop Kahler potential in five-dimensional brane-world supergravity

    Full text link
    We present an on-shell formulation of 5d gauged supergravity coupled to chiral matter multiplets localized at the orbifold fixed points. The brane action is constructed via the Noether method. In such set-up we compute one-loop corrections to the Kahler potential of the effective 4d supergravity and compare the result with previous computations based on the off-shell formalism. The results agree at lowest order in brane sources, however at higher order there are differences. We explain this discrepancy by an ambiguity in resolving singularities associated with the presence of infinitely thin branes.Comment: 20 page

    Material-independent crack arrest statistics: Application to indentation experiments

    Full text link
    An extensive experimental study of indentation and crack arrest statistics is presented for four different brittle materials (alumina, silicon carbide, silicon nitride, glass). Evidence is given that the crack length statistics can be described by a universal (i.e. material independent) distribution. The latter directly derives from results obtained when modeling crack propagation as a depinning phenomenon. Crack arrest (or effective toughness) statistics appears to be fully characterized by two parameters, namely, an asymptotic crack length (or macroscopic toughness) value and a power law size dependent width. The experimental knowledge of the crack arrest statistics at one given scale thus gives access to its knowledge at all scales
    • …
    corecore