8 research outputs found

    Angiotensin II Facilitates Breast Cancer Cell Migration and Metastasis

    Get PDF
    Breast cancer metastasis is a leading cause of death by malignancy in women worldwide. Efforts are being made to further characterize the rate-limiting steps of cancer metastasis, i.e. extravasation of circulating tumor cells and colonization of secondary organs. In this study, we investigated whether angiotensin II, a major vasoactive peptide both produced locally and released in the bloodstream, may trigger activating signals that contribute to cancer cell extravasation and metastasis. We used an experimental in vivo model of cancer metastasis in which bioluminescent breast tumor cells (D3H2LN) were injected intra-cardiacally into nude mice in order to recapitulate the late and essential steps of metastatic dissemination. Real-time intravital imaging studies revealed that angiotensin II accelerates the formation of metastatic foci at secondary sites. Pre-treatment of cancer cells with the peptide increases the number of mice with metastases, as well as the number and size of metastases per mouse. In vitro, angiotensin II contributes to each sequential step of cancer metastasis by promoting cancer cell adhesion to endothelial cells, trans-endothelial migration and tumor cell migration across extracellular matrix. At the molecular level, a total of 102 genes differentially expressed following angiotensin II pre-treatment were identified by comparative DNA microarray. Angiotensin II regulates two groups of connected genes related to its precursor angiotensinogen. Among those, up-regulated MMP2/MMP9 and ICAM1 stand at the crossroad of a network of genes involved in cell adhesion, migration and invasion. Our data suggest that targeting angiotensin II production or action may represent a valuable therapeutic option to prevent metastatic progression of invasive breast tumors

    AngII increases breast cancer cell adhesion and migration.

    Full text link
    <p>(<b>A</b>). MDA-MB-231 breast cancer cell adhesion to HCMEC/D3 endothelial cells monolayer following exposure of cancer cells to AngII (100 nM) for 24 hrs. Results are means +/− SEM of 7 independent experiments performed in quadruplicate, and expressed as fold increase of untreated cells (control, Ctrl). *p<0.05. (<b>B, C</b>). Boyden chamber assays of tumor cell migration across 8 µm-pore filters either non coated (B) or coated with matrigel to mimic cell invasion (C). Results are means +/− SEM of 3 separate experiments performed in triplicate, and expressed as fold increase of control. *p<0.05. (<b>D, E</b>). Wound healing assay. Results are from 2 independent experiments performed in quintuplicate, and expressed as fold increase of wound closure at time 16 hrs (T16) compared to control (vehicle-treated cells). *p<0.05. (E). Representative pictures of wounds from control and AngII-treated cells (100 nM, 24 hrs) at T0 and T16. Magnification, 100x. (<b>F</b>). Trans-endothelial migration. Results are mean +/− SEM of 3 independent experiments performed in triplicate, and expressed as fold increase of control. *p<0.05.</p

    AngII increases the time-course, incidence and number of metastases in an experimental model <i>in vivo</i>.

    Full text link
    <p>(<b>A</b>). Percentage of mice showing at least one detectable metastasis over time after intracardiac injection of D3H2LN cells treated with AngII (red dotted line, n = 14) or vehicle (black line, n = 15). (<b>B</b>). Number of metastases per mouse at indicated days. Results are mean +/− SEM of 15 control (white bar) and 14 AngII-treated (black bar) groups. (<b>C</b>). Number of photons/s per mouse at indicated days. Results are expressed as in B. (<b>D</b>). Histological analysis of metastases developing at the brain (left panel), the lung (middle panel) and the bone (right panel), obtained from 3 µm sections of formalin-fixed, paraffin-embedded tissue blocks stained with hematoxylin/eosin. Arrows indicate tumor cells. Magnification, 200x. (<b>E</b>). Representative pictures of 5 mice taken at day 9 after injection of control cells (upper panel) or AngII-treated cells (lower panel). * p<0.05, ** p<0.01.</p

    NEOTROPICAL CARNIVORES: a data set on carnivore distribution in the Neotropics

    Full text link
    Mammalian carnivores are considered a key group in maintaining ecological health and can indicate potential ecological integrity in landscapes where they occur. Carnivores also hold high conservation value and their habitat requirements can guide management and conservation plans. The order Carnivora has 84 species from 8 families in the Neotropical region: Canidae; Felidae; Mephitidae; Mustelidae; Otariidae; Phocidae; Procyonidae; and Ursidae. Herein, we include published and unpublished data on native terrestrial Neotropical carnivores (Canidae; Felidae; Mephitidae; Mustelidae; Procyonidae; and Ursidae). NEOTROPICAL CARNIVORES is a publicly available data set that includes 99,605 data entries from 35,511 unique georeferenced coordinates. Detection/non-detection and quantitative data were obtained from 1818 to 2018 by researchers, governmental agencies, non-governmental organizations, and private consultants. Data were collected using several methods including camera trapping, museum collections, roadkill, line transect, and opportunistic records. Literature (peer-reviewed and grey literature) from Portuguese, Spanish and English were incorporated in this compilation. Most of the data set consists of detection data entries (n = 79,343; 79.7%) but also includes non-detection data (n = 20,262; 20.3%). Of those, 43.3% also include count data (n = 43,151). The information available in NEOTROPICAL CARNIVORES will contribute to macroecological, ecological, and conservation questions in multiple spatio-temporal perspectives. As carnivores play key roles in trophic interactions, a better understanding of their distribution and habitat requirements are essential to establish conservation management plans and safeguard the future ecological health of Neotropical ecosystems. Our data paper, combined with other large-scale data sets, has great potential to clarify species distribution and related ecological processes within the Neotropics. There are no copyright restrictions and no restriction for using data from this data paper, as long as the data paper is cited as the source of the information used. We also request that users inform us of how they intend to use the data
    corecore