45 research outputs found

    Interactions of the drug amphotericin B with phospholipid membranes containing or not ergosterol: new insight into the role of ergosterol

    Get PDF
    AbstractAmphotericin B (AmB) is an amphipathic polyene antibiotic which permeabilizes ergosterol-containing membranes, supposedly by formation of pores. In water, AmB forms chiral aggregates, modelled as stacks of planar dimers in which the joined polyene chains in each dimer turn round, from one dimer to the following in these stacks, by forming a helical array. Studies of the binding of AmB with L-dipalmitoylphosphatidylcholine (L-DPPC) and L-dilauroylphosphatidylcholine (L-DLPC) bilayers disclose the main following results. (1) An inversion of the helicity of the L-DPPC-bound AmB aggregates, when the L-DPPC bilayers are in the gel phase, is inferred from the evolution of the circular dichroism spectra of AmB+L-DPPC mixtures. (2) An AmB-induced gel-to-subgel transformation of L-DPPC bilayers, in the previous mixtures, is revealed by a differential scanning calorimetry study. (3) The role played by ergosterol in the location of phospholipid-bound AmB aggregates with respect to a phospholipid bilayer is directly demonstrated from atomic force microscopy observations of mica-supported AmB+L-DLPC mixtures, in the presence or absence of ergosterol. While in the absence of ergosterol AmB aggregates remained at the surface of the bilayer, in the presence of ergosterol they appeared embedded within this bilayer and became hollow-centered. As such an embedding in the hydrophobic core of a bilayer requires a rearrangement of the aggregates with respect to their architecture in water, this rearrangement is held responsible for the hollowing of aggregates. The hollow-centered sublayer-embedded AmB aggregates are thought to be the precursors of the formation of AmB pores

    Strategy for Enhancing Ultrahigh-Molecular-Weight Block Copolymer Chain Mobility to Access Large Period Sizes (>100 nm)

    Get PDF
    Assembling ultrahigh-molecular-weight (UHMW) block copolymers (BCPs) in rapid time scales is perceived as a grand challenge in polymer science due to slow kinetics. Through surface engineering and identifying a nonvolatile solvent (propylene glycol methyl ether acetate, PGMEA), we showcase the impressive ability of a series of lamellar poly(styrene)-block-poly(2-vinylpyridine) (PS-b-P2VP) BCPs to self-assemble directly after spin-coating. In particular, we show the formation of large-period (≈111 nm) lamellar structures from a neat UHMW PS-b-P2VP BCP. The significant influence of solvent–polymer solubility parameters are explored to enhance the polymer chain mobility. After optimization using solvent vapor annealing, increased feature order of ultralarge-period PS-b-P2VP BCP patterns in 1 h is achieved. Isolated metallic and dielectric features are also demonstrated to exemplify the promise that large BCP periods offer for functional applications. The methods described in this article center on industry-compatible patterning schemes, solvents, and deposition techniques. Thus, our straightforward UHMW BCP strategy potentially paves a viable and practical path forward for large-scale integration in various sectors, e.g., photonic band gaps, polarizers, and membranes that demand ultralarge period sizes

    Block Copolymer Directed Metamaterials and Metasurfaces for Novel Optical Devices

    Get PDF
    Optical metamaterials are artificially engineered architectures that exhibit desired optical properties not found in nature. Bespoke design requires the ability to define shape, size, orientation, and composition of material structures on the nanometer length scale. Bottom-up self-assembly methods, such as block copolymer (BCP) templating, offer unique pathways to tailored features, at spatial resolution not routinely achieved by conventional top-down techniques. In this review, the authors provide the general readership with basic concepts of the underlying fabrication processes and examine optical phenomena arising from BCP-derived metamaterials and nanoresonators, with both dielectric and plasmonic characteristics. A number of diverse structural conformations designed by BCP templating and their implementation in optical devices is evaluated. The discussion includes 3D metamaterials, such as gyroidal and hyperbolic arrangements, as well as 2D metasurfaces. Based on recent developments in exploring these emerging structural and material configurations, the review further highlights unexplored opportunities offered by BCP self-assembly for novel metamaterials and metasurface devices

    Large area Al₂O₃–Au raspberry-like nanoclusters from iterative block-copolymer self-assembly

    Get PDF
    In the field of functional nanomaterials, core–satellite nanoclusters have recently elicited great interest due to their unique optoelectronic properties. However, core–satellite synthetic routes to date are hampered by delicate and multistep reaction conditions and no practical method has been reported for the ordering of these structures onto a surface monolayer. Herein we show a reproducible and simplified thin film process to fabricate bimetallic raspberry nanoclusters using block copolymer (BCP) lithography. The fabricated inorganic raspberry nanoclusters consisted of a ∼36 nm alumina core decorated with ∼15 nm Au satellites after infusing multilayer BCP nanopatterns. A series of cylindrical BCPs with different molecular weights allowed us to dial in specific nanodot periodicities (from 30 to 80 nm). Highly ordered BCP nanopatterns were then selectively infiltrated with alumina and Au species to develop multi-level bimetallic raspberry features. Microscopy and X-ray reflectivity analysis were used at each fabrication step to gain further mechanistic insights and understand the infiltration process. Furthermore, grazing-incidence small-angle X-ray scattering studies of infiltrated films confirmed the excellent order and vertical orientation over wafer scale areas of Al2O3/Au raspberry nanoclusters. We believe our work demonstrates a robust strategy towards designing hybrid nanoclusters since BCP blocks can be infiltrated with various low cost salt-based precursors. The highly controlled nanocluster strategy disclosed here could have wide ranging uses, in particular for metasurface and optical based sensor applications

    High refractive index in low metal content nanoplasmonic surfaces from self-assembled block copolymer thin films

    Get PDF
    Materials with a high and tunable refractive index are attractive for nanophotonic applications. In this contribution, we propose a straightforward fabrication technique of high-refractive index surfaces based on self-assembled nanostructured block copolymer thin films. The selective and customizable metal incorporation within out-of-plane polymer lamellae produces azimuthally isotropic metallic nanostructures of defined geometries, which were analysed using microscopy and small-angle X-ray scattering techniques. Variable-angle spectroscopic ellipsometry was used to relate the geometrical parameters of the metallic features and the resulting refractive index of the patterned surfaces. In particular, nanostructured gold patterns with a high degree of homogeneity and a gold content as low as 16 vol% reach a refractive index value of more than 3 in the visible domain. Our study thus demonstrates a new route for the preparation of high refractive index surfaces with a low metal content for optical applications

    Water-dispersed lamellar phases of symmetric poly(styrene)-block-poly(acrylic acid) diblock copolymers: Model systems for flat dense polyelectrolyte brushes

    No full text
    We investigate the static properties of a water-dispersed lamellar (L) phase formed in the melt state with a nearly symmetric poly(styrene)-block-poly(acrylic acid) (PS-b-PAA) diblock copolymer. The PAA brush is considered as a model flat polyelectrolyte (PE) brush of controlled surface density. Thanks to small-angle X-ray scattering, its behavior in water is studied as a function of (i) its ionization, through the pH of the dispersions which is increased by an addition of a known amount of a base, i.e. sodium hydroxyde NaOH, and (ii) in the presence of a monovalent salt, i.e. sodium chloride NaCl, of concentration C S . At low pH, we find that the brush effectively behaves as a neutral brush. At high pH, the brush is in the so-called “osmotic regime”, in which all sodium counterions are trapped within the brush volume and stretch the chains via an osmotic effect. The properties of such a brush in the presence of a monovalent salt, confirm this result, showing a C S -1/3 dependence in the brush height L O , in agreement with mean-field predictions. The L O -C S profiles at different ionizations give access to the actual brush internal charge fraction f. The results are found to be in very good quantitative agreement with experimental measures found in the literature, and can be completely and quantitatively described by Oosawa’s approach to counterion condensation in a semi-dilute to concentrated solution of charged, rod-like chains

    Pearling instabilities in water-dispersed copolymer cylinders with charged brushes

    No full text
    We investigate the structural behavior of a poly(styrene)-block-poly(acrylic acid) diblock copolymer which forms hexagonally-packed PS cylinders (C-phase) in the melt state. The water dispersion of this structure provides hairy cylinders which comprise a PAA swollen cylindrical brush with a height h tunable via its degree of ionization and the ionic strength in the solution, and a water-free, PS cylindrical core of constant radius R C. Such system constitutes an “out-of-equilibrium” frustrated model system: the selective swelling of the PAA brush results in a frustration of the interface curvature, which the ratio h/R C allows to quantify. Upon heating at a temperature higher than the glass transition temperature of the PS core, the glassiness of the core is relieved and the mechanical constraints arising from the selective swelling of the structure can be relaxed: the cylinders undergo a cylinder-to-sphere transition upon annealing at high temperature, when above a frustration threshold h/R C ≈ 1.8. Thanks to a careful mapping of the transition diagram, an undulating cylindrical morphology (UC) is identified between unchanged cylinders ( h/R C \leqslant 1.8) and spheres ( h/R C ⩾ 2.0), which appears to result from a Rayleigh-like pearling instability of the copolymer cylinders

    Magneto-optical study of the orientation confinement of particles in ferrolyotropic systems

    No full text
    Ferrosmectics and ferrohexagonals are magnetic liquid crystals which consist of a lamellar and a hexagonal phase in which magnetic nanoparticles are incorporated. The magnetic field variation and the relaxation of the linear optical birefringence of ferrosmectics and ferrohexagonals and its time relaxation are measured in different geometries and compared with that of a ferrofluid sample. We interpret our data by the existence of a mean orientation of the magnetic particles in the lyotropic structure, which appears to be non-random in zero field. We conclude that the magnetic moments of the particles are preferentially aligned in the plane of the ferrosmectic layers and along the axis of the ferrohexagonal cylinders, respectively. To account for this preferred alignment, we propose that some of the particles in the ferrosmectic are adsorbed on the surfactant layers with their moment aligned in the lamellar plane, while the orientation of the moments in the ferrohexagonal is restricted to a cone around the cylinder axis

    Optical properties of self-assembled plasmonic hyperbolic metasurfaces and metamaterials extracted by (Mueller matrix) spectroscopic ellipsometry

    No full text
    Hyperbolic metamaterials use the concept of controlling the propagative modes through the engineering of the dispersion relation, and are considered highly promising to reach different meta-properties. Spectroscopic Mueller Matrix Ellipsometry with variable angle of incidence and full azimuthal rotation of the sample is a powerful optical technique to characterize both anisotropic and bi-anisotropic materials. We here discuss the experimentally extracted uniaxial and biaxial optical properties of two self-assembled plasmonic systems that appear to have the appropriate meta-dispersion relations. The metasurface was produced by oblique incidence angle ion beam sputtering of glass followed by shadow deposition of Au [1]. The second bulk metamaterial was a block-copolymer based self-assembled hyperbolic metamaterial of nanocomposites based on metal nanoparticles embedded in a self-assembled anisotropic polymer host, presenting a strong spectrally selective optical anisotropy [2]. The extracted effective dielectric functions and the resulting dispersion relations are presented
    corecore