8,625 research outputs found

    Legendre expansion of the neutrino-antineutrino annihilation kernel: Influence of high order terms

    Full text link
    We calculate the Legendre expansion of the rate of the process ν+νˉ↔e++e−\nu + \bar{\nu} \leftrightarrow e^+ + e^- up to 3rd order extending previous results of other authors which only consider the 0th and 1st order terms. Using different closure relations for the moment equations of the radiative transfer equation we discuss the physical implications of taking into account quadratic and cubic terms on the energy deposition outside the neutrinosphere in a simplified model. The main conclusion is that 2nd order is necessary in the semi-transparent region and gives good results if an appropriate closure relation is used.Comment: 14 pages, 4 figures. To be published in A&A Supplement Serie

    Anisotropic thermal emission from magnetized neutron stars

    Full text link
    The thermal emission from isolated neutron stars is not well understood. The X-ray spectrum is very close to a blackbody but there is a systematic optical excess flux with respect to the extrapolation to low energy of the best blackbody fit. This fact, in combination with the observed pulsations in the X-ray flux, can be explained by anisotropies in the surface temperature distribution.We study the thermal emission from neutron stars with strong magnetic fields in order to explain the origin of the anisotropy. We find (numerically) stationary solutions in axial symmetry of the heat transportequations in the neutron star crust and the condensed envelope. The anisotropy in the conductivity tensor is included consistently. The presence of magnetic fields of the expected strength leads to anisotropy in the surface temperature. Models with toroidal components similar to or larger than the poloidal field reproduce qualitatively the observed spectral properties and variability of isolated neutron stars. Our models also predict spectral features at energies between 0.2 and 0.6 keV.Comment: 18 pages, 19 figures, version accepted for publication in A&

    Equivalence of Faddeev-Jackiw and Dirac approaches for gauge theories

    Get PDF
    The equivalence between the Dirac method and Faddeev-Jackiw analysis for gauge theories is proved. In particular we trace out, in a stage by stage procedure, the standard classification of first and second class constraints of Dirac's method in the F-J approach. We also find that the Darboux transformation implied in the F-J reduction process can be viewed as a canonical transformation in Dirac approach. Unlike Dirac's method the F-J analysis is a classical reduction procedure, then the quantization can be achieved only in the framework of reduce and then quantize approach with all the know problems that this type of procedures presents. Finally we illustrate the equivalence by means of a particular example.Comment: Latex v2.09, 15 pages, to appear in Int. J. Mod. Phys.
    • …
    corecore