8,625 research outputs found
Legendre expansion of the neutrino-antineutrino annihilation kernel: Influence of high order terms
We calculate the Legendre expansion of the rate of the process up to 3rd order extending previous results
of other authors which only consider the 0th and 1st order terms. Using
different closure relations for the moment equations of the radiative transfer
equation we discuss the physical implications of taking into account quadratic
and cubic terms on the energy deposition outside the neutrinosphere in a
simplified model. The main conclusion is that 2nd order is necessary in the
semi-transparent region and gives good results if an appropriate closure
relation is used.Comment: 14 pages, 4 figures. To be published in A&A Supplement Serie
Anisotropic thermal emission from magnetized neutron stars
The thermal emission from isolated neutron stars is not well understood. The
X-ray spectrum is very close to a blackbody but there is a systematic optical
excess flux with respect to the extrapolation to low energy of the best
blackbody fit. This fact, in combination with the observed pulsations in the
X-ray flux, can be explained by anisotropies in the surface temperature
distribution.We study the thermal emission from neutron stars with strong
magnetic fields in order to explain the origin of the anisotropy. We find
(numerically) stationary solutions in axial symmetry of the heat
transportequations in the neutron star crust and the condensed envelope. The
anisotropy in the conductivity tensor is included consistently. The presence of
magnetic fields of the expected strength leads to anisotropy in the surface
temperature. Models with toroidal components similar to or larger than the
poloidal field reproduce qualitatively the observed spectral properties and
variability of isolated neutron stars. Our models also predict spectral
features at energies between 0.2 and 0.6 keV.Comment: 18 pages, 19 figures, version accepted for publication in A&
Equivalence of Faddeev-Jackiw and Dirac approaches for gauge theories
The equivalence between the Dirac method and Faddeev-Jackiw analysis for
gauge theories is proved. In particular we trace out, in a stage by stage
procedure, the standard classification of first and second class constraints of
Dirac's method in the F-J approach. We also find that the Darboux
transformation implied in the F-J reduction process can be viewed as a
canonical transformation in Dirac approach. Unlike Dirac's method the F-J
analysis is a classical reduction procedure, then the quantization can be
achieved only in the framework of reduce and then quantize approach with all
the know problems that this type of procedures presents. Finally we illustrate
the equivalence by means of a particular example.Comment: Latex v2.09, 15 pages, to appear in Int. J. Mod. Phys.
- …