15 research outputs found

    Epigenetic Regulation of Cytokine Production in Human Amnion and Villous Placenta

    Get PDF
    The mechanisms of human preterm labour appear inextricably linked to cytokine biosynthesis by gestational tissues. In turn, cytokine production by gestational tissues has been shown to be regulated by epigenetic mechanisms. In this paper, we demonstrate that cytokine production in gestational tissues is regulated epigenetically in a tissue-specific manner. Furthermore, we show that treatment with a histone deacetylation inhibitor can partially abrogate LPS-stimulated TNFα production in villous placenta but not amnion. LPS treatment significantly (P < 0.05) increased the production of IL-1β (∼10–34-fold), TNFα (∼23–>100-fold) and IL10 (∼6–10-fold) after 24 h of treatment in villous explants, as expected. There were no significant LPS effects on IL1Ra production. AZA treatment did not have any significant effect on any cytokines' production tested either alone or in combination with LPS. Interestingly, however, the stimulatory effects of LPS on TNFα production were partially mitigated (P < 0.05) by TSA treatment in villous explants. We suggest caution in the consideration of histone deacetylation inhibitors in pregnancy due to the different responses in gestational tissues

    Brief Communication: Sexual dimorphic expression of myostatin and follistatin like-3 in a rat trans-generational under-nutrition model

    Get PDF
    The detrimental effects of maternal under-nutrition during gestation on fetal development are well known with an increased propensity of metabolic disorders identified in the adult offspring. Understanding exactly how and by which molecular pathways inadequate nutrition can impact upon offspring phenotype is critical and necessary for the development of treatment methods and ultimately prevention of any negative health effects. Myostatin, a negative regulator of muscle development, has recently been shown to effect glucose homeostasis and fat deposition. The involvement of myostatin in glucose metabolism and adipogenesis thus supports its ability to act in the continued alterations to the postnatal phenotype of the offspring. This hypothesis was examined in the current study using a trans-generational gestationally under-nourished rat model exposed to a high-fat (HF) diet post-weaning. The body weight, body fat, plasma glucose and insulin concentrations of the offspring, both male and female, were investigated in relation to the protein expression of myostatin and its main inhibitor; follistatin like-3 (FSTL-3), in skeletal muscle of mature offspring. Sexual dimorphism was clearly evident in the majority of these measures, including myostatin and FSTL-3 expression. Generally males displayed higher (P < 0.05) myostatin precursor and dimer expression than females, which was especially apparent (P < 0.01) in both chow and HF trans-generationally undernourished (UNAD) groups. In females only, myostatin precursor and dimer expression was altered by both trans-generational under-nutrition and postnatal diet. Overall FSTL-3 expression did not differ between sexes, although difference between sexes within certain treatments and diets were evident. Most notably, HF fed UNAD females had higher (P < 0.05) FSTL-3 expression than HF fed UNAD males. The former group also displayed higher (P < 0.01) FSTL-3 expression compared to all other female groups. In summary, myostatin may prove to be a key mediator of the effects of inadequate prenatal nutrition, independently or in combination with a high-fat postnatal diet on offspring phenotype. Consequently, further study of myostatin may provide a novel therapeutic pathway for the treatment of metabolic disorders; however, it is vital that the influence of nutrition and gender should be taken into consideration

    Russia, lo zombie dell'URSS. Intervista a Vladimir Sorokin

    No full text
    Background: An appropriate transcriptional profile in the placenta and fetal membranes is required for successful pregnancy; any variations may lead to inappropriate timing of birth. Epigenetic regulation through reversible modification of chromatin has emerged as a fundamental mechanism for the control of gene expression in a range of biological systems and can be modified by pharmacological intervention, thus providing novel therapeutic avenues. TIMP-1 is an endogenous inhibitor of MMPs, and hence is intimately involved in maintaining the integrity of the fetal membranes until labor. Objective and Methods: To determine if TIMP-1 is regulated by DNA methylation in gestational tissues we employed an in vitro model in which gestational tissue explants were treated with demethylating agent 5-aza-2'-deoxycytidine (AZA) and lipopolysaccharide (LPS). Results: Quantitative Real-Time PCR (qRT-PCR) revealed that TIMP-1 transcription was significantly increased by combined treatment of AZA and LPS, but not LPS alone, in villous, amnion and choriodecidua explants after 24 and 48 hrs, whilst western blotting showed protein production was stimulated after 24 hrs only. Upon interrogation of the TIMP-1 promoter using Sequenom EpiTyper MassARRAY, we discovered sex-specific differential methylation, in part explained by x-linked methylation in females. Increased TIMP-1 in the presence of LPS was potentiated by AZA treatment, signifying that a change in chromatin structure, but not in DNA methylation at the promoter region, is required for transcriptional activators to access the promoter region of TIMP-1. Conclusions: Collectively, these observations support a potential role for pharmacological agents that modify chromatin structure to be utilized in the therapeutic targeting of TIMP-1 to prevent premature rupture of the fetal membranes in an infectious setting.</p

    Regulation of MT1-MMP/MMP-2/TIMP-2 axis in human placenta

    No full text
    Matrix metalloproteinases (MMPs) and specific endogenous tissue inhibitors of metalloproteinases (TIMPs) mediate rupture of the fetal membranes in both physiological and pathological conditions. MMPs and TIMPs are subject to regulation by DNA methylation in human malignancies and pre-eclampsia. To determine if membrane type 1 MMP (MT1-MMP), MMP2, and TIMP2 are regulated by DNA methylation in human placentas, we employed an in vitro model where human placental tissues were collected at term gestation and cultured with methylation inhibiting agent 5-aza-2′-deoxycytidine (AZA) and lipopolysaccharide. The results suggest that DNA methylation is not directly involved in the regulation of MT1-MMP in placental tissue; however, remodeling of chromatin by a pharmacologic agent such as AZA potentiates an infection-related increase in MT1-MMP. MT1-MMP is a powerful activator of MMP2 and this action, coupled with either no change or a decrease in TIMP2 concentrations, favors a gelatinolytic state leading to extracellular matrix degradation, which could predispose fetal membranes to rupture prematurely during inflammation.</p

    Expression and regulation of DNA methyltransferases in human endometrium

    No full text
    The messenger RNA of the DNA methyltransferases DNMT3a and DNMT3b are expressed temporally in the endometrium across the menstrual cycle, as is the steroid hormone regulation of DNMT1, DNMT3a, and DNMT3b. This suggests that DNA methylation in endometrium is changeable during the menstrual cycle and potentially alters gene expression. Copyright © 2011 American Society for Reproductive Medicine Published by Elsevier Inc
    corecore