9 research outputs found

    A new integral-synergetic controller for direct reactive and active powers control of a dual-rotor wind system

    No full text
    This paper proposes a new integral-synergetic controller for direct reactive and active powers control (DARPC) for a grid-connected doubly-fed induction generators (DFIGs) in dual-rotor wind power generation applications. The proposed DARPC strategy employs integral-synergetic control (ISC) to regulate the reactive and active powers of the DFIG-based variable speed dual-rotor wind turbine systems. The proposed ISC technique is the contribution of this work, where this strategy is a development of synergetic control and simplicity and robustness are the most prominent features. The main advantages of the proposed ISC-DARPC technique are ease of implement, good dynamic response, simple structure, and constant switching frequency operation. The Matlab software is used to validate the design of the ISC-DARPC technique, and the obtained results are compared with traditional DARPC. In addition, the ISC-DARPC technique is able to fully minimize ripples in both torque and active power during grid voltage imbalance or parametric changes on the DFIG

    Improved Adaptive Hamiltonian Control Law for Constant Power Load Stability Issue in DC Microgrid: Case Study for Multiphase Interleaved Fuel Cell Boost Converter

    No full text
    The cascaded connection of power converters in a DC microgrid may cause instabilities. Indeed, power converters operating as external loads exhibit constant power load (CPL) behaviors. In this study, the design of the feedback controller of a multi–cell interleaved fuel cell (FC) step–up power circuit is based on the adaptive Hamiltonian control law. It includes two integral terms to confirm that there is no steady-state error in the DC bus voltage, and to guarantee the current balancing of each input inductor current. The design confirms that the desired equilibrium point is (locally) asymptotically stable by using the Lyapunov stability proof. The control approach is validated via digital simulations and experimental tests performed with a 2500 W FC converter supplied by an FC/reformer size of 2500 W and 50 V

    Design, Modeling, and Model-Free Control of Permanent Magnet-Assisted Synchronous Reluctance Motor for e-Vehicle Applications

    No full text
    This paper describes the model-free control approaches for permanent magnet-assisted (PMa) synchronous reluctance motors (SynRMs) drive. The important improvement of the proposed control technique is the ability to determine the behavior of the state-variable system during both fixed-point and transient operations. The mathematical models of PMa-SynRM were firstly written in a straightforward linear model form to show the known and unknown parts. Before, the proposed controller, named here the intelligent proportional-integral (iPI), was applied as a control law to fix some unavoidable modeling errors and uncertainties of the motor. Lastly, a dSPACE control platform was used to realize the proposed control algorithm. A prototype 1-kW test bench based on a PMa-SynRM machine was designed and realized in the laboratory to test the studied control approach. The simulation using MATLAB/Simulink and experimental results revealed that the proposed control achieved excellent results under transient operating conditions for the motor drive’s cascaded control compared to traditional PI and model-based controls

    Comparative Study of Adaptive Hamiltonian Control Laws for DC Microgrid Stabilization: An Fuel Cell Boost Converter

    Get PDF
    Future smart grids can be seen as a system of interlinked microgrids, including small-scale local power systems. They consist of main power sources, external loads, and energy storage devices. In these microgrids, the negative incremental impedance behavior of constant power loads (CPLs) is of major concern since it can lead to instability and oscillations. To cope with this issue, this article aims to propose a comparative study of adaptive Hamiltonian control laws, also known as interconnection and damping–assignment–passivity–based controllers (IDA-PBC). These control laws are developed to ensure the stability of the DC output voltage of a boost converter supplied by a proton exchange membrane fuel cell (PEMFC) source. To validate the develop control laws, experiments have been performed on a fit test bench including a real 2.5 kW PEMFC stack (hydrogen is supplied by a reformer engine), a DC-DC step-up circuit, and a real-time controller dSPACE (implementation of the control laws). Moreover, a comparative study has been carried out between the proposed three adaptive Hamiltonian control laws and a classic linear cascaded proportional–integral (PI) control law. The obtained results by simulations through MATLAB/SimulinkTM and experimentally have allowed demonstrating that the third Hamiltonian control law presents the best performances over the other control laws

    Design, Modeling, and Model-Free Control of Permanent Magnet-Assisted Synchronous Reluctance Motor for e-Vehicle Applications

    No full text
    This paper describes the model-free control approaches for permanent magnet-assisted (PMa) synchronous reluctance motors (SynRMs) drive. The important improvement of the proposed control technique is the ability to determine the behavior of the state-variable system during both fixed-point and transient operations. The mathematical models of PMa-SynRM were firstly written in a straightforward linear model form to show the known and unknown parts. Before, the proposed controller, named here the intelligent proportional-integral (iPI), was applied as a control law to fix some unavoidable modeling errors and uncertainties of the motor. Lastly, a dSPACE control platform was used to realize the proposed control algorithm. A prototype 1-kW test bench based on a PMa-SynRM machine was designed and realized in the laboratory to test the studied control approach. The simulation using MATLAB/Simulink and experimental results revealed that the proposed control achieved excellent results under transient operating conditions for the motor drive’s cascaded control compared to traditional PI and model-based controls
    corecore