124 research outputs found

    Antibody glycosylation in COVID-19

    Get PDF
    Proteomic

    The structure and role of lactone intermediates in linkage-specific sialic acid derivatization reactions

    Get PDF
    Sialic acids occur ubiquitously throughout vertebrate glycomes and often endcap glycans in either alpha 2,3- or alpha 2,6-linkage with diverse biological roles. Linkage-specific sialic acid characterization is increasingly performed by mass spectrometry, aided by differential sialic acid derivatization to discriminate between linkage isomers. Typically, during the first step of such derivatization reactions, in the presence of a carboxyl group activator and a catalyst, alpha 2,3-linked sialic acids condense with the subterminal monosaccharides to form lactones, while alpha 2,6-linked sialic acids form amide or ester derivatives. In a second step, the lactones are converted into amide derivatives. Notably, the structure and role of the lactone intermediates in the reported reactions remained ambiguous, leaving it unclear to which extent the amidation of alpha 2,3-linked sialic acids depended on direct aminolysis of the lactone, rather than lactone hydrolysis and subsequent amidation. In this report, we used mass spectrometry to unravel the role of the lactone intermediate in the amidation of alpha 2,3-linked sialic acids by applying controlled reaction conditions on simple and complex glycan standards. The results unambiguously show that in common sialic acid derivatization protocols prior lactone formation is a prerequisite for the efficient, linkage-specific amidation of alpha 2,3-linked sialic acids, which proceeds predominantly via direct aminolysis. Furthermore, nuclear magnetic resonance spectroscopy confirmed that exclusively the C2 lactone intermediate is formed on a sialyllactose standard. These insights allow a more rationalized method development for linkage-specific sialic derivatization in the future.Proteomic

    Profiling the proteoforms of urinary prostate-specific antigen by capillary electrophoresis-mass spectrometry

    Get PDF
    Early detection of prostate cancer may lead to the overdiagnosis and overtreatment of patients as well as missing significant cancers. The current diagnostic approach uses elevated serum concentrations of prostate-specific antigen (PSA) as an indicator of risk. However, this test has been widely criticized as it shows poor specificity and sensitivity. In order to improve early detection and diagnosis, several studies have investigated whether different PSA proteoforms are correlated to prostate cancer. Until now, studies and methodologies for the comprehensive characterization of PSA proteoforms from biofluids are scarce. For this purpose, we developed an intact protein assay to analyze PSA by capillary electrophoresis-electrospray ionization-mass spectrometry after affinity purification from patients? urine. Here, we determined six proteolytic cleavage variants. In regard to glycosylation, tri-, di-, mono- and non-sialylated complex-type N-glycans were found on non-cleaved PSA, as well as the non-glycosylated variant. The performance of the intact protein assay was assessed using a pooled sample, obtaining an inter-day variability of 15%. Furthermore, urinary patient samples were analyzed by intact protein analysis and a bottom-up approach (glycopeptide analysis). This combined approach revealed complimentary information on both levels, demonstrating the benefit of using two orthogonal techniques to provide a thorough profile of urinary PSA.Significance: The detection of clinically relevant prostate cancer requires a more specific and sensitive biomarker and, in this case, several PSA proteoforms may be able to aid or improve the current PSA test. However, a comprehensive analysis of the intact PSA proteoform profile is still lacking. This study investigated the PSA proteoforms present in urine and, in particular, determined the relative contribution of cleaved PSA and noncleaved PSA forms to the total glycosylation profile. Importantly, intact protein analysis did not require further sample treatment before being measured by CE-ESI-MS. Furthermore, its glycosylation was also assessed in a bottom-up approach to provide complementary information. Overall, these results represent an important basis for future characterization and biomarker studies.Proteomic

    Autoimmune hepatitis displays distinctively high multi-antennary sialylation on plasma N-glycans compared to other liver diseases

    Get PDF
    BackgroundChanges in plasma protein glycosylation are known to functionally affect proteins and to associate with liver diseases, including cirrhosis and hepatocellular carcinoma. Autoimmune hepatitis (AIH) is a liver disease characterized by liver inflammation and raised serum levels of IgG, and is difficult to distinguish from other liver diseases. The aim of this study was to examine plasma and IgG-specific N-glycosylation in AIH and compare it with healthy controls and other liver diseases.MethodsIn this cross-sectional cohort study, total plasma N-glycosylation and IgG Fc glycosylation analysis was performed by mass spectrometry for 66 AIH patients, 60 age- and sex-matched healthy controls, 31 primary biliary cholangitis patients, 10 primary sclerosing cholangitis patients, 30 non-alcoholic fatty liver disease patients and 74 patients with viral or alcoholic hepatitis. A total of 121 glycans were quantified per individual. Associations between glycosylation traits and AIH were investigated as compared to healthy controls and other liver diseases.ResultsGlycan traits bisection (OR: 3.78 [1.88–9.35], p-value: 5.88 × 10− 3), tetraantennary sialylation per galactose (A4GS) (OR: 2.88 [1.75–5.16], p-value: 1.63 × 10− 3), IgG1 galactosylation (OR: 0.35 [0.2–0.58], p-value: 3.47 × 10− 5) and hybrid type glycans (OR: 2.73 [1.67–4.89], p-value: 2.31 × 10− 3) were found as discriminators between AIH and healthy controls. High A4GS differentiated AIH from other liver diseases, while bisection associated with cirrhosis severity.ConclusionsCompared to other liver diseases, AIH shows distinctively high A4GS levels in plasma, with potential implications on glycoprotein function and clearance. Plasma-derived glycosylation has potential to be used as a diagnostic marker for AIH in the future. This may alleviate the need for a liver biopsy at diagnosis. Glycosidic changes should be investigated further in longitudinal studies and may be used for diagnostic and monitoring purposes in the future.Cellular mechanisms in basic and clinical gastroenterology and hepatolog

    Immunoglobulin G1 Fc glycosylation as an early hallmark of severe COVID-19.

    Get PDF
    Background: Immunoglobulin G1 (IgG1) effector functions are impacted by the structure of fragment crystallizable (Fc) tail-linked N-glycans. Low fucosylation levels on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike (S) protein-specific IgG1 has been described as a hallmark of severe coronavirus disease 2019 (COVID-19) and may lead to activation of macrophages via immune complexes thereby promoting inflammatory responses, altogether suggesting involvement of IgG1 Fc glycosylation modulated immune mechanisms in COVID-19. Methods: In this prospective, observational single center cohort study, IgG1 Fc glycosylation was analyzed by liquid chromatography-mass spectrometry following affinity capturing from serial plasma samples of 159 SARS-CoV-2 infected hospitalized patients. Findings: At baseline close to disease onset, anti-S IgG1 glycosylation was highly skewed when compared to total plasma IgG1. A rapid, general reduction in glycosylation skewing was observed during the disease course. Low anti-S IgG1 galactosylation and sialylation as well as high bisection were early hallmarks of disease severity, whilst high galactosylation and sialylation and low bisection were found in patients with low disease severity. In line with these observations, anti-S IgG1 glycosylation correlated with various inflammatory markers. Interpretation: Association of low galactosylation, sialylation as well as high bisection with disease severity and inflammatory markers suggests that further studies are needed to understand how anti-S IgG1 glycosylation may contribute to disease mechanism and to evaluate its biomarker potential. Funding: This project received funding from the European Commission's Horizon2020 research and innovation program for H2020-MSCA-ITN IMforFUTURE, under grant agreement number 721815, and supported by Crowdfunding Wake Up To Corona, organized by the Leiden University Fund

    Overexpression of Cathepsin Z Contributes to Tumor Metastasis by Inducing Epithelial-Mesenchymal Transition in Hepatocellular Carcinoma

    Get PDF
    The aim of this study was to characterize the oncogenic function and mechanism of Cathepsin Z (CTSZ) at 20q13.3, a frequently amplified region in hepatocellular carcinoma (HCC). Real-time PCR were used to compare CTSZ expression between paired HCC tumor and non-tumor specimens. CTSZ gene was stably transfected into HCC line QGY-7703 cells and its role in tumorigenicity and cell motility was characterized by soft agar, wound-healing, transwell invasion and cell adhesion assay, and tumor xenograft mouse model. Western blot analysis was used to study expression of proteins associated with epithelial-mesenchymal transition (EMT)

    Prestige Affects Cultural Learning in Chimpanzees

    Get PDF
    Humans follow the example of prestigious, high-status individuals much more readily than that of others, such as when we copy the behavior of village elders, community leaders, or celebrities. This tendency has been declared uniquely human, yet remains untested in other species. Experimental studies of animal learning have typically focused on the learning mechanism rather than on social issues, such as who learns from whom. The latter, however, is essential to understanding how habits spread. Here we report that when given opportunities to watch alternative solutions to a foraging problem performed by two different models of their own species, chimpanzees preferentially copy the method shown by the older, higher-ranking individual with a prior track-record of success. Since both solutions were equally difficult, shown an equal number of times by each model and resulted in equal rewards, we interpret this outcome as evidence that the preferred model in each of the two groups tested enjoyed a significant degree of prestige in terms of whose example other chimpanzees chose to follow. Such prestige-based cultural transmission is a phenomenon shared with our own species. If similar biases operate in wild animal populations, the adoption of culturally transmitted innovations may be significantly shaped by the characteristics of performers

    Soil-landscape model helps predict potassium supply in vineyards

    Full text link
    The Lodi Winegrape District is one of the largest in California and encompasses a wide diversity of wine-grape varieties, production systems and soils, which complicates grape nutrient management To identify regions within this district that have similar nutrient-management needs, we are developing a soil-landscape model based on soil survey information. Our current model identifies five regions within the Lodi district with presumed relationships between soil properties and potassium-supplying ability. Region 1 has weakly developed, clay-rich soils in basin alluvium; region 2 has weakly developed, coarser-textured soils on recent alluvial fans, flood plains and stream terraces; region 3 has moderately developed soils on low terraces derived from granitic alluvium; region 4 has highly developed soils on high terraces derived from mixed alluvium; and region 5 has weakly developed soils formed on undulating volcanic terrain. Field and lab studies of soils in these regions show that our model is reasonable in concept, but that it must be fine-tuned to account for differing degrees of soil variability within each region in order to make realistic nutrient-management predictions

    Peripheral T-lymphocytes express WNT7A and its restoration in leukemia-derived lymphoblasts inhibits cell proliferation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>WNT7a, a member of the Wnt ligand family implicated in several developmental processes, has also been reported to be dysregulated in some types of tumors; however, its function and implication in oncogenesis is poorly understood. Moreover, the expression of this gene and the role that it plays in the biology of blood cells remains unclear. In addition to determining the expression of the <it>WNT7A </it>gene in blood cells, in leukemia-derived cell lines, and in samples of patients with leukemia, the aim of this study was to seek the effect of this gene in proliferation.</p> <p>Methods</p> <p>We analyzed peripheral blood mononuclear cells, sorted CD3 and CD19 cells, four leukemia-derived cell lines, and blood samples from 14 patients with Acute lymphoblastic leukemia (ALL), and 19 clinically healthy subjects. Reverse transcription followed by quantitative Real-time Polymerase chain reaction (qRT-PCR) analysis were performed to determine relative <it>WNT7A </it>expression. Restoration of WNT7a was done employing a lentiviral system and by using a recombinant human protein. Cell proliferation was measured by addition of WST-1 to cell cultures.</p> <p>Results</p> <p>WNT7a is mainly produced by CD3 T-lymphocytes, its expression decreases upon activation, and it is severely reduced in leukemia-derived cell lines, as well as in the blood samples of patients with ALL when compared with healthy controls (<it>p </it>≤0.001). By restoring <it>WNT7A </it>expression in leukemia-derived cells, we were able to demonstrate that WNT7a inhibits cell growth. A similar effect was observed when a recombinant human WNT7a protein was used. Interestingly, restoration of <it>WNT7A </it>expression in Jurkat cells did not activate the canonical Wnt/β-catenin pathway.</p> <p>Conclusions</p> <p>To our knowledge, this is the first report evidencing quantitatively decreased <it>WNT7A </it>levels in leukemia-derived cells and that <it>WNT7A </it>restoration in T-lymphocytes inhibits cell proliferation. In addition, our results also support the possible function of <it>WNT7A </it>as a tumor suppressor gene as well as a therapeutic tool.</p
    corecore