527 research outputs found
New insights from domain-averaged Fermi holes and bond order analysis into the bonding conundrum in C₂
The bonding in the ground state of C2 is examined using a combined approach based on the analysis of domain-averaged Fermi holes and of the contributions to covalent bond orders that can be associated with individual localised natural orbitals. The σ system in this molecule turns out to be particularly sensitive, evolving from a description that includes a fairly traditional shared electron pair σ bond, for a range of intermediate nuclear separations, to a somewhat different situation near equilibrium geometry, where non-classical repulsive interactions are particularly important. The various results provide further support for the view that the electronic structure of this molecule sufficiently exceeds the scope of traditional bonding paradigms that attempts to classify the bonding in terms of a classical bond multiplicity are highly questionable
Stratum Corneum Lipid Composition and Structure in Cultured Skin Substitutes is Restored to Normal after Grafting onto Athymic Mice
Restoration of an epidermal barrier is a definitive requirement for wound closure. Cultured skin substitutes grafted onto athymic nude mice were used as a model for a long-term study of stratum corneum barrier lipid metabolism and organization. Samples of stratum corneum collected after 12 and 21 d in vitro and 6, 11, and 24 mo postgrafting were examined for their lipid and fatty acid composition, and their lipid organization and structure using electron microscopy and small angle X-ray diffraction, respectively. All of these methods confirm the impaired barrier function of cultured skin substitutes in vitro, as judged from the deviations in lipid composition and from poor organization of the stratum corneum lipids that show no lamellar structure. At 6 mo postgrafting, the total stratum corneum lipid profiles of the epidermal grafts is close to that of the human stratum corneum with the exception of the presence of mouse specific lipids. The increase of ceramides 4–7 in cultured skin substitutes after grafting indicates restored activity of processes involved in the hydroxylation of fatty acids and sphingoid bases. Conversely, the ceramide profile still reveals some abnormalities (elevated content of ceramide 2 and slightly lower content of ceramide 3) and the content of long-chain fatty acids remains below its physiologic level at 6 mo postgrafting, but normalizes by 2 y postgrafting. The ultramicroscopic observations revealed the formation of lamellar extracellular lipid domains by 4 mo postgrafting. Despite these findings, the X-ray diffraction showed differences in the diffraction pattern at 2 y after grafting, suggesting that the organization of stratum corneum lipids in all epidermal grafts differs from that of the native skin. Journal of Investigative Dermatology Symposium Proceedings 3:114–120, 199
High glucose inhibits human epidermal keratinocyte proliferation for cellular studies on diabetes mellitus
In order to more clarify the delayed wound healing in diabetes mellitus, we cultured the human epidermal keratinocytes in both 6 mM (control group) and 12 mM glucose (high-glucose group) of ‘complete’ MCDB 153 medium. Hyperglycaemia slowed the rate of their proliferation and inhibited their DNA synthesis and the production of total proteins. By 1 month after primary seeding in high-glucose group, the cells ceased their proliferation, whereas the cells in control group grew for more than 40 days. Mean population doublings in high-glucose group was 5·27 (vs. 7·25 in control, P = 0·001), and mean population doubling time during 1 month in high glucose group was 5·43 days (vs. 3·65 days in control, P = 0·02). They indicate that prolonged exposure to high glucose decreases the replicative life span of human epidermal keratinocytes in vitro. Furthermore, analysis of fatty acid contents in membrane phospholipids with thin-layer and gas chromatography showed no difference between the cultured keratinocytes in both conditions. Immunocytochemical staining of glucose transporter 1 shows that 28·1% of cells in high-glucose group were almost twice positive of those in control group (13·2%, P = 0·008). The mechanism of the ill effects of high glucose on epidermal keratinocytes is not so far clear, but it indicates the possibility of any direct effect of hyperglycaemia on glucose metabolism without changing lipid metabolism on cell membrane. The high-glucose group presented in this report can be available as an in vitro valuable study model of skin epidermal condition on diabetes mellitus.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/72307/1/j.1742-4801.2005.00148.x.pd
Multi-user video streaming using unequal error protection network coding in wireless networks
In this paper, we investigate a multi-user video streaming system applying unequal error protection (UEP) network coding (NC) for simultaneous real-time exchange of scalable video streams among multiple users. We focus on a simple wireless scenario where users exchange encoded data packets over a common central network node (e.g., a base station or an access point) that aims to capture the fundamental system behaviour. Our goal is to present analytical tools that provide both the decoding probability analysis and the expected delay guarantees for different importance layers of scalable video streams. Using the proposed tools, we offer a simple framework for design and analysis of UEP NC based multi-user video streaming systems and provide examples of system design for video conferencing scenario in broadband wireless cellular networks
- …