946 research outputs found

    Hydrostatic Equilibrium of a Perfect Fluid Sphere with Exterior Higher-Dimensional Schwarzschild Spacetime

    Get PDF
    We discuss the question of how the number of dimensions of space and time can influence the equilibrium configurations of stars. We find that dimensionality does increase the effect of mass but not the contribution of the pressure, which is the same in any dimension. In the presence of a (positive) cosmological constant the condition of hydrostatic equilibrium imposes a lower limit on mass and matter density. We show how this limit depends on the number of dimensions and suggest that Λ>0\Lambda > 0 is more effective in 4D than in higher dimensions. We obtain a general limit for the degree of compactification (gravitational potential on the boundary) of perfect fluid stars in DD-dimensions. We argue that the effects of gravity are stronger in 4D than in any other number of dimensions. The generality of the results is also discussed

    Stellar models with Schwarzschild and non-Schwarzschild vacuum exteriors

    Full text link
    A striking characteristic of non-Schwarzschild vacuum exteriors is that they contain not only the total gravitational mass of the source, but also an {\it arbitrary} constant. In this work, we show that the constants appearing in the "temporal Schwarzschild", "spatial Schwarzschild" and "Reissner-Nordstr{\"o}m-like" exteriors are not arbitrary but are completely determined by star's parameters, like the equation of state and the gravitational potential. Consequently, in the braneworld scenario the gravitational field outside of a star is no longer determined by the total mass alone, but also depends on the details of the internal structure of the source. We show that the general relativistic upper bound on the gravitational potential M/R<4/9M/R < 4/9, for perfect fluid stars, is significantly increased in these exteriors. Namely, M/R<1/2M/R < 1/2, M/R<2/3M/R < 2/3 and M/R<1M/R < 1 for the temporal Schwarzschild, spatial Schwarzschild and Reissner-Nordstr{\"o}m-like exteriors, respectively. Regarding the surface gravitational redshift, we find that the general relativistic Schwarzschild exterior as well as the braneworld spatial Schwarzschild exterior lead to the same upper bound, viz., Z<2Z < 2. However, when the external spacetime is the temporal Schwarzschild metric or the Reissner-Nordstr{\"o}m-like exterior there is no such constraint: Z<Z < \infty. This infinite difference in the limiting value of ZZ is because for these exteriors the effective pressure at the surface is negative. The results of our work are potentially observable and can be used to test the theory.Comment: 19 pages, 3 figures and caption

    Transition from decelerated to accelerated cosmic expansion in braneworld universes

    Full text link
    Braneworld theory provides a natural setting to treat, at a classical level, the cosmological effects of vacuum energy. Non-static extra dimensions can generally lead to a variable vacuum energy, which in turn may explain the present accelerated cosmic expansion. We concentrate our attention in models where the vacuum energy decreases as an inverse power law of the scale factor. These models agree with the observed accelerating universe, while fitting simultaneously the observational data for the density and deceleration parameter. The redshift at which the vacuum energy can start to dominate depends on the mass density of ordinary matter. For Omega = 0.3, the transition from decelerated to accelerated cosmic expansion occurs at z approx 0.48 +/- 0.20, which is compatible with SNe data. We set a lower bound on the deceleration parameter today, namely q > - 1 + 3 Omega/2, i.e., q > - 0.55 for Omega = 0.3. The future evolution of the universe crucially depends on the time when vacuum starts to dominate over ordinary matter. If it dominates only recently, at an epoch z < 0.64, then the universe is accelerating today and will continue that way forever. If vacuum dominates earlier, at z > 0.64, then the deceleration comes back and the universe recollapses at some point in the distant future. In the first case, quintessence and Cardassian expansion can be formally interpreted as the low energy limit of our model, although they are entirely different in philosophy. In the second case there is no correspondence between these models and ours.Comment: In V2 typos are corrected and one reference is added for section 1. To appear in General Relativity and Gravitatio

    Mass and Charge in Brane-World and Non-Compact Kaluza-Klein Theories in 5 Dim

    Get PDF
    In classical Kaluza-Klein theory, with compactified extra dimensions and without scalar field, the rest mass as well as the electric charge of test particles are constants of motion. We show that in the case of a large extra dimension this is no longer so. We propose the Hamilton-Jacobi formalism, instead of the geodesic equation, for the study of test particles moving in a five-dimensional background metric. This formalism has a number of advantages: (i) it provides a clear and invariant definition of rest mass, without the ambiguities associated with the choice of the parameters used along the motion in 5D and 4D, (ii) the electromagnetic field can be easily incorporated in the discussion, and (iii) we avoid the difficulties associated with the "splitting" of the geodesic equation. For particles moving in a general 5D metric, we show how the effective rest mass, as measured by an observer in 4D, varies as a consequence of the large extra dimension. Also, the fifth component of the momentum changes along the motion. This component can be identified with the electric charge of test particles. With this interpretation, both the rest mass and the charge vary along the trajectory. The constant of motion is now a combination of these quantities. We study the cosmological variations of charge and rest mass in a five-dimensional bulk metric which is used to embed the standard k = 0 FRW universes. The time variations in the fine structure "constant" and the Thomson cross section are also discussed.Comment: V2: References added, discussion extended. V3 is identical to V2, references updated. To appear in General Relativity and Gravitatio

    Accelerated expansion from braneworld models with variable vacuum energy

    Full text link
    In braneworld models a variable vacuum energy may appear if the size of the extra dimension changes during the evolution of the universe. In this scenario the acceleration of the universe is related not only to the variation of the cosmological term, but also to the time evolution of GG and, possibly, to the variation of other fundamental "constants" as well. This is because the expansion rate of the extra dimension appears in different contexts, notably in expressions concerning the variation of rest mass and electric charge. We concentrate our attention on spatially-flat, homogeneous and isotropic, brane-universes where the matter density decreases as an inverse power of the scale factor, similar (but at different rate) to the power law in FRW-universes of general relativity. We show that these braneworld cosmologies are consistent with the observed accelerating universe and other observational requirements. In particular, GG becomes constant and Λ(4)const×H2\Lambda_{(4)} \approx const \times H^2 asymptotically in time. Another important feature is that the models contain no "adjustable" parameters. All the quantities, even the five-dimensional ones, can be evaluated by means of measurements in 4D. We provide precise constrains on the cosmological parameters and demonstrate that the "effective" equation of state of the universe can, in principle, be determined by measurements of the deceleration parameter alone. We give an explicit expression relating the density parameters Ωρ\Omega_{\rho}, ΩΛ\Omega_{\Lambda} and the deceleration parameter qq. These results constitute concrete predictions that may help in observations for an experimental/observational test of the model.Comment: References added, typos correcte

    Late time cosmic acceleration from vacuum Brans-Dicke theory in 5D

    Full text link
    We show that the scalar-vacuum Brans-Dicke equations in 5D are equivalent to Brans-Dicke theory in 4D with a self interacting potential and an effective matter field. The cosmological implication, in the context of FRW models, is that the observed accelerated expansion of the universe comes naturally from the condition that the scalar field is not a ghost, i.e., ω>3/2\omega > - 3/2. We find an effective matter-dominated 4D universe which shows accelerated expansion if 3/2<ω<1- 3/2 < \omega < - 1. We study the question of whether accelerated expansion can be made compatible with large values of ω\omega, within the framework of a 5D scalar-vacuum Brans-Dicke theory with variable, instead of constant, parameter ω\omega. In this framework, and based on a general class of solutions of the field equations, we demonstrate that accelerated expansion is incompatible with large values of ω\omega.Comment: In V2 the summary section is expanded. To be published in Classical and Quantum Gravity

    Oxidation of the borohydride Ion at silver nanoparticles on a glassy carbon electrode (GCE) using pulsed potential techniques

    No full text
    Direct oxidation borohydride fuel cells are very attractive energy conversion devices. Silver has been reported as one of the few materials which can catalyze an 8-electron oxidation. Potential step amperometric pulse techniques to synthesize nanostructured silver material on flat glassy carbon electrodes is reported and significant differences with bulk silver deposit have been observed. The oxidation of borohydride ion on the silver particles occurs at -0.025 V vs. SCE and the potential decreases towards negative values at longer cycle times. The oxidation current also decreases with the number of cycles, suggesting that the silver active sites become partially blocked by oxidation products of borohydride. The electroactive area per unit electrode area of silver was relatively low for particles deposited using potential step amperometric techniques on glassy carbon (0.002 cm2 per cm-2) compared with the area found at a polycrystalline silver electrode (0.103 cm2 per cm-2

    Effective spacetime from multi-dimensional gravity

    Full text link
    We study the effective spacetimes in lower dimensions that can be extracted from a multidimensional generalization of the Schwarzschild-Tangherlini spacetimes derived by Fadeev, Ivashchuk and Melnikov ({\it Phys. Lett,} {\bf A 161} (1991) 98). The higher-dimensional spacetime has D=(4+n+m)D = (4 + n + m) dimensions, where nn and mm are the number of "internal" and "external" extra dimensions, respectively. We analyze the effective (4+n)(4 + n) spacetime obtained after dimensional reduction of the mm external dimensions. We find that when the mm extra dimensions are compact (i) the physics in lower dimensions is independent of mm and the character of the singularities in higher dimensions, and (ii) the total gravitational mass MM of the effective matter distribution is less than the Schwarzshild mass. In contrast, when the mm extra dimensions are large this is not so; the physics in (4+n)(4 + n) does explicitly depend on mm, as well as on the nature of the singularities in high dimensions, and the mass of the effective matter distribution (with the exception of wormhole-like distributions) is bigger than the Schwarzshild mass. These results may be relevant to observations for an experimental/observational test of the theory.Comment: A typo in Eq. (24) is fixe
    corecore