357 research outputs found

    On the angular limits of Bloch functions

    Get PDF
    This paper contains a method to associate to each function f in the little Bloch space another function f* in the Bloch space in such way that f has a finite angular limit where f* is radially bounded. The idea of the method comes from the theory of the lacunary series. An application to conformal mapping from the unit disc to asymptotically Jordan domains is given

    Two-Dimensional Critical Percolation: The Full Scaling Limit

    Full text link
    We use SLE(6) paths to construct a process of continuum nonsimple loops in the plane and prove that this process coincides with the full continuum scaling limit of 2D critical site percolation on the triangular lattice -- that is, the scaling limit of the set of all interfaces between different clusters. Some properties of the loop process, including conformal invariance, are also proved.Comment: 45 pages, 12 figures. This is a revised version of math.PR/0504036 without the appendice

    Critical points and supersymmetric vacua, III: String/M models

    Full text link
    A fundamental problem in contemporary string/M theory is to count the number of inequivalent vacua satisfying constraints in a string theory model. This article contains the first rigorous results on the number and distribution of supersymmetric vacua of type IIb string theories compactified on a Calabi-Yau 3-fold XX with flux. In particular, complete proofs of the counting formulas in Ashok-Douglas and Denef-Douglas are given, together with van der Corput style remainder estimates. We also give evidence that the number of vacua satisfying the tadpole constraint in regions of bounded curvature in moduli space is of exponential growth in b3(X)b_3(X).Comment: Final revision for publication in Commun. Math. Phys. Minor corrections and editorial change

    A lower bound for the mass of axisymmetric connected black hole data sets

    Full text link
    We present a generalisation of the Brill-type proof of positivity of mass for axisymmetric initial data to initial data sets with black hole boundaries. The argument leads to a strictly positive lower bound for the mass of simply connected, connected axisymmetric black hole data sets in terms of the mass of a reference Schwarzschild metric

    Boundaries of univalent Baker domains

    Get PDF
    Let ff be a transcendental entire function and let UU be a univalent Baker domain of ff. We prove a new result about the boundary behaviour of conformal maps and use this to show that the non-escaping boundary points of UU form a set of harmonic measure zero with respect to UU. This leads to a new sufficient condition for the escaping set of ff to be connected, and also a new general result on Eremenko's conjecture

    Superposition operators between weighted Banach spaces of analytic functions of controlled growth

    Full text link
    The final publication is available at Springer via: http://dx.doi.org/10.1007/s00605-012-0441-6[EN] We characterize the entire functions which transform a weighted Banach space of holomorphic functions on the disc of type H∞ into another such space by superposition. We also show that all the superposition operators induced by such entire functions map bounded sets into bounded sets and are continuous. Superposition operators that map bounded sets into relatively compact sets are also considered. © 2012 Springer-Verlag Wien.The research of Bonet was partially supported by MICINN and FEDER Project MTM2010-15200, by GV project Prometeo/2008/101, and by ACOMP/2012/090. The research of Vukotic was partially supported by MICINN grant MTM2009-14694-C02-01, Spain and by the European ESF Network HCAA ("Harmonic and Complex Analysis and Its Applications").Bonet Solves, JA.; Vukotić, D. (2013). Superposition operators between weighted Banach spaces of analytic functions of controlled growth. Monatshefte für Mathematik. 170(3-4):311-323. https://doi.org/10.1007/s00605-012-0441-6S3113231703-4Álvarez, V., Márquez, M.A., Vukotić, D.: Superposition operators between the Bloch space and Bergman spaces. Ark. Mat. 42, 205–216 (2004)Appell, J., Zabrejko, P.P.: Nonlinear Superposition Operators, Cambridge Tracts in Mathematics 95. Cambridge University Press, London (1990)Appell, J., Zabrejko, P.P.: Remarks on the superposition operator problem in various function spaces. Complex Var. Elliptic Equ. 55(8–10), 727–737 (2010)Bierstedt, K.D., Bonet, J., Galbis, A.: Weighted spaces of holomorphic functions on bounded domains. Michigan Math. J. 40, 271–297 (1993)Bierstedt, K.D., Bonet, J., Taskinen, J.: Associated weights and spaces of holomorphic functions. Studia Math. 127, 137–168 (1998)Bonet, J., Domański, P., Lindström, M.: Essential norm and weak compactness of composition operators on weighted Banach spaces of analytic functions. Can. Math. Bull. 42(2), 139–148 (1999)Bonet, J., Domański, P., Lindström, M., Taskinen, J.: Composition operators between weighted Banach spaces of analytic functions. J. Aust. Math. Soc. (Ser. A) 64, 101–118 (1998)Boyd, C., Rueda, P.: Holomorphic superposition operators between Banach function spaces. Preprint (2011)Boyd, C., Rueda, P.: Superposition operators between weighted spaces of analytic functions. Preprint (2011)Buckley, S.M., Fernández, J.L., Vukotić, D.: Superposition operators on Dirichlet type spaces. In: Papers on Analysis: A Volume dedicaed to Olli Martio on the occasion of his 60th birthday. Rep. Univ. Jyväskyla Dept. Math. Stat, vol. 83, pp. 41–61. Univ. Jyväskyla, Jyväskyla (2001)Buckley, S.M., Vukotić, D.: Univalent interpolation in Besov spaces and superposition into Bergman spaces. Potential Anal. 29(1), 1–16 (2008)Cámera, G.A.: Nonlinear superposition on spaces of analytic functions. In: Harmonic Analysis and Operator Theory (Carácas, 1994), Contemp. Math, vol. 189, pp. 103–116. Am. Math. Soc, Providence (1995)Cámera, G.A., Giménez, J.: The nonlinear superposition operators acting on Bergman spaces. Compositio Math. 93, 23–35 (1994)Castillo, R.E., Ramos Fernández, J.C., Salazar, M.: Bounded superposition operators between Bloch-Orlicz and α\alpha -Bloch spaces. Appl. Math. Comp. 218, 3441–3450 (2011)Dineen, S.: Complex Analysis in Locally Convex Spaces, vol. 57. North-Holland Math. Studies, Amsterdam (1981)Girela, D., Márquez, M.A.: Superposition operators between QpQ_p spaces and Hardy spaces. J. Math. Anal. Appl. 364, 463–472 (2010)Grosse-Erdmann, K.-G.: A weak criterion for vector-valued holomorphic functions. Math. Proc. Camb. Publ. Soc. 136, 399–41 (2004)Harutyunyan, A., Lusky, W.: On the boundedness of the differentiation operator between weighted spaces of holomorphic functions. Studia Math. 184, 233–247 (2008)Langenbruch, M.: Continuation of Gevrey regularity for solutions of partial differential operators. In: Functional Analysis (Trier, 1994), pp. 249–280. de Gruyter, Berlin (1996)Levin, B.Ya.: Lectures on Entire Functions. Translations of Mathematical Monographs, vol. 150, Amer. Math. Soc., Providence (1996).Lusky, W.: On weighted spaces of harmonic and holomorphic functions. J. Lond. Math. Soc. 51, 309–320 (1995)Lusky, W.: On the isomorphism classes of weighted spaces of harmonic and holomorphic functions. Studia Math. 175, 19–45 (2006)Pommerenke, Ch.: Boundary Behaviour of Conformal Maps. Springer, Berlin (1992)Ramos Fernández, J.C.: Bounded superposition operators between weighted Banach spaces of analytic functions. Preprint, Available from http://arxiv.org/abs/1203.5857Shields, A.L., Williams, D.L.: Bounded projections, duality and multipliers in spaces of analytic functions. Trans. Am. Math. Soc. 162, 287–302 (1971)Vukotić, D.: Integrability, growth of conformal maps, and superposition operators, Technical Report 10. Aristotle University of Thessaloniki, Department of Mathematics (2004)Xiong, C.: Superposition operators between QpQ_p spaces and Bloch-type spaces. Complex Var. Theory Appl. 50, 935–938 (2005)Xu, W.: Superposition operators on Bloch-type spaces. Comput. Methods Funct. Theory 7, 501–507 (2007)Zhu, K.: Operator Theory in Function Spaces, 2nd edn. Am. Math. Soc., Providence (2007

    Partial regularity and t-analytic sets for Banach function algebras

    Get PDF
    In this note we introduce the notion of t-analytic sets. Using this concept, we construct a class of closed prime ideals in Banach function algebras and discuss some problems related to Alling’s conjecture in H infinity. A description of all closed t-analytic sets for the disk-algebra is given. Moreover, we show that some of the assertions in [8] concerning the O-analyticity and S-regularity of certain Banach function algebras are not correct. We also determine the largest set on which a Douglas algebra is pointwise regular

    Nonvanishing univalent functions

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46267/1/209_2005_Article_BF01214860.pd
    corecore