2 research outputs found

    Loss of CAMK2G affects intrinsic and motor behavior but has minimal impact on cognitive behavior

    Get PDF
    IntroductionThe gamma subunit of calcium/calmodulin-dependent protein kinase 2 (CAMK2G) is expressed throughout the brain and is associated with neurodevelopmental disorders. Research on the role of CAMK2G is limited and attributes different functions to specific cell types.MethodsTo further expand on the role of CAMK2G in brain functioning, we performed extensive phenotypic characterization of a Camk2g knockout mouse.ResultsWe found different CAMK2G isoforms that show a distinct spatial expression pattern in the brain. Additionally, based on our behavioral characterization, we conclude that CAMK2G plays a minor role in hippocampus-dependent learning and synaptic plasticity. Rather, we show that CAMK2G is required for motor function and that the loss of CAMK2G results in impaired nest-building and marble burying behavior, which are innate behaviors that are associated with impaired neurodevelopment.DiscussionTaken together, our results provide evidence for a unique function of this specific CAMK2 isozyme in the brain and further support the role of CAMK2G in neurodevelopment

    Lifespan is unaffected by size and direction of daily phase shifts in Nasonia, a hymenopteran insect with strong circadian light resetting

    Get PDF
    Most organisms have an endogenous circadian clock with a period length of approximately 24 h that enables adaptation, synchronization and anticipation to environmental cycles. The circadian system (circa = about or around, diem = a day) may provide evolutionary benefits when entrained to the 24-h light-dark cycle. The more the internal circadian period (τ) deviates from the external light-dark cycle, the larger the daily phase shifts need to be to synchronize to the environment. In some species, large daily phase shifts reduce survival rate. Here we tested this 'resonance fitness hypothesis' on the diurnal wasp Nasonia vitripennis, which exhibits a large latitudinal cline in free-running period with longer circadian period lengths in the north than in the south. Longevity was measured in northern and southern wasps placed into light-dark cycles (T-cycles) with periods ranging from 20 h to 28 h. Further, locomotor activity was recorded to estimate range and phase angle of entrainment under these various T-cycles. A light pulse induced phase response curve (PRC) was measured in both lines to understand entrainment results. We expected a concave survival curve with highest longevity at T = τ and a reduction in longevity the further τ deviates from T (τ/T<>1). Our results do not support this resonance fitness hypothesis. We did not observe a reduction in longevity when τ deviates from T. Our results may be understood by the strong circadian light resetting mechanism (type 0 PRC) to single light pulses that we measured in Nasonia, resulting in: (1) the broad range of entrainment, (2) the wide natural variation in circadian free-running period, and (3) the lack of reduced survival when τ/T ratio's deviates from 1. Together this indicates that circadian adaption to latitude may lead to changes in circadian period and light response, without negative influences on survival
    corecore