14 research outputs found

    Parametric Representation of Paragraphs and Their Classification

    Full text link

    Echo State Networks for Mobile Robot Modeling and Control

    Full text link
    Applications of recurrent neural networks (RNNs) tend to be rare because training is difficult. A recent theoretical breakthrough [Jae01b] called Echo State Networks (ESNs) has made RNN training easy and fast and makes RNNs a versatile tool for many problems. The key idea is training the output weights only of an otherwise topologically unrestricted but contractive network. After outlining the mathematical basics, we apply ESNs to two examples namely to the generation of a dynamical model for a differential drive robot using supervised learning and secondly to the training of a respective motor controller
    corecore