129 research outputs found
One-way quantum computation via manipulation of polarization and momentum qubits in two-photon cluster states
Four-qubit cluster states of two photons entangled in polarization and linear
momentum have been used to realize a complete set of single qubit rotations and
the C-NOT gate for equatorial qubits with high values of fidelity. By the
computational equivalence of the two degrees of freedom our result demonstrate
the suitability of two photon cluster states for rapid and efficient one-way
quantum computing.Comment: RevTex4, 4 pages, 3 figure
Engineering integrated pure narrow-band photon sources
Engineering and controlling well defined states of light for quantum
information applications is of increasing importance as the complexity of
quantum systems grows. For example, in quantum networks high multi-photon
interference visibility requires properly devised single mode sources. In this
paper we propose a spontaneous parametric down conversion source based on an
integrated cavity-waveguide, where single narrow-band, possibly distinct,
spectral modes for the idler and the signal fields can be generated. This mode
selection takes advantage of the clustering effect, due to the intrinsic
dispersion of the nonlinear material. In combination with a CW laser and fast
detection, our approach provides a means to engineer a source that can
efficiently generate pure photons, without filtering, that is compatible with
long distance quantum communication. Furthermore, it is extremely flexible and
could easily be adapted to a wide variety of wavelengths and applications.Comment: 13 pages, 7 figure
meV resolution in laser-assisted energy-filtered transmission electron microscopy
The electronic, optical, and magnetic properties of quantum solids are
determined by their low-energy (< 100 meV) many-body excitations. Dynamical
characterization and manipulation of such excitations relies on tools that
combine nm-spatial, fs-temporal, and meV-spectral resolution. Currently,
phonons and collective plasmon resonances can be imaged in nanostructures with
sub-nm and 10s meV space/energy resolution using state-of-the-art
energy-filtered transmission electron microscopy (TEM), but only under static
conditions, while fs-resolved measurements are common but lack spatial or
energy resolution. Here, we demonstrate a new method of spectrally resolved
photon-induced near-field electron microscopy (SRPINEM) that allows us to
obtain nm-fs-resolved maps of nanoparticle plasmons with an energy resolution
determined by the laser linewidth (20 meV in this work), and not limited by
electron beam and spectrometer energy spreading. This technique can be extended
to any optically-accessible low-energy mode, thus pushing TEM to a previously
inaccessible spectral domain with an unprecedented combination of space, energy
and temporal resolution.Comment: 19 pages, 7 figure
Vertical MEMS Resonators for Real-Time Clock Applications
MEMS resonators are today widely investigated as a desirable alternative to quartz resonators in real-time clock applications, because of their low-cost, integration capability properties. Nevertheless, MEMS resonators performances are still not competitive, especially in terms of frequency stability and device equivalent resistance (and, then, power consumption). We propose a new structure for a MEMS resonator, with a vertical-like transduction mechanism, which exhibits promising features. The vertical resonator can be fabricated with the low-cost, high performance THELMA technology, and it is designed to be efficiently frequency tunable. With respect to the commonly investigated lateral resonators, it is expected to have lower equivalent resistances and improved large-scale repeatability characteristics
Applications of quantum cloning
Quantum Cloning Machines (QCMs) allow for the copying of information, within the limits imposed by quantum mechanics. These devices are particularly interesting in the high-gain regime, i.e., when one input qubit generates a state of many output qubits. In this regime, they allow for the study of certain aspects of the quantum to classical transition. The understanding of these aspects is the root of the two recent applications that we will review in this paper: the first one is the Quantum Cloning Radiometer, a device which is able to produce an absolute measure of spectral radiance. This device exploits the fact that in the quantum regime information can be copied with only finite fidelity, whereas when a state becomes macroscopic, this fidelity gradually increases to 1. Measuring the fidelity of the cloning operation then allows to precisely determine the absolute spectral radiance of the input optical source. We will then discuss whether a Quantum Cloning Machine could be used to produce a state visible by the naked human eye, and the possibility of a Bell Experiment with humans playing the role of detector
Enhanced electron-phonon coupling in graphene with periodically distorted lattice
Electron-phonon coupling directly determines the stability of cooperative
order in solids, including superconductivity, charge and spin density waves.
Therefore, the ability to enhance or reduce electron-phonon coupling by optical
driving may open up new possibilities to steer materials' functionalities,
potentially at high speeds. Here we explore the response of bilayer graphene to
dynamical modulation of the lattice, achieved by driving optically-active
in-plane bond stretching vibrations with femtosecond mid-infrared pulses. The
driven state is studied by two different ultrafast spectroscopic techniques.
Firstly, TeraHertz time-domain spectroscopy reveals that the Drude scattering
rate decreases upon driving. Secondly, the relaxation rate of hot
quasi-particles, as measured by time- and angle-resolved photoemission
spectroscopy, increases. These two independent observations are quantitatively
consistent with one another and can be explained by a transient three-fold
enhancement of the electron-phonon coupling constant. The findings reported
here provide useful perspective for related experiments, which reported the
enhancement of superconductivity in alkali-doped fullerites when a similar
phonon mode was driven.Comment: 12 pages, 4 figure
A versatile source of polarisation entangled photons for quantum network applications
We report a versatile and practical approach for generating high-quality
polarization entanglement in a fully guided-wave fashion. Our setup relies on a
high-brilliance type-0 waveguide generator producing paired photon at a telecom
wavelength associated with an advanced energy-time to polarisation transcriber.
The latter is capable of creating any pure polarization entangled state, and
allows manipulating single photon bandwidths that can be chosen at will over
five orders of magnitude, ranging from tens of MHz to several THz. We achieve
excellent entanglement fidelities for particular spectral bandwidths, i.e. 25
MHz, 540 MHz and 100 GHz, proving the relevance of our approach. Our scheme
stands as an ideal candidate for a wide range of network applications, ranging
from dense division multiplexing quantum key distribution to heralded optical
quantum memories and repeaters.Comment: 5 figure
From attosecond to zeptosecond coherent control of free-electron wave functions using semi-infinite light fields
Light-electron interaction in empty space is the seminal ingredient for
free-electron lasers and also for controlling electron beams to dynamically
investigate materials and molecules. Pushing the coherent control of free
electrons by light to unexplored timescales, below the attosecond, would enable
unprecedented applications in light-assisted electron quantum circuits and
diagnostics at extremely small timescales, such as those governing
intramolecular electronic motion and nuclear phenomena. We experimentally
demonstrate attosecond coherent manipulation of the electron wave function in a
transmission electron microscope, and show that it can be pushed down to the
zeptosecond regime with existing technology. We make a relativistic pulsed
electron beam interact in free space with an appropriately synthesized
semi-infinite light field generated by two femtosecond laser pulses reflected
at the surface of a mirror and delayed by fractions of the optical cycle. The
amplitude and phase of the resulting coherent oscillations of the electron
states in energymomentum space are mapped via momentum-resolved ultrafast
electron energy-loss spectroscopy. The experimental results are in full
agreement with our theoretical framework for light-electron interaction, which
predicts access to the zeptosecond timescale by combining semi-infinite X-ray
fields with free electrons.Comment: 22 pages, 6 figure
Scientific teaching targeting faculty from diverse institutions
We offered four annual professional development workshops called STAR (for Scientific Teaching, Assessment, and Resources) modeled after the National Academies Summer Institute (SI) on Undergraduate Education in Biology. In contrast to the SI focus on training faculty from research universities, STAR\u27s target was faculty from community colleges, 2-yr campuses, and public and private research universities. Because of the importance of community colleges and 2-yr institutions as entries to higher education, we wanted to determine whether the SI model can be successfully extended to this broader range of institutions. We surveyed the four cohorts; 47 STAR alumni responded to the online survey. The responses were separated into two groups based on the Carnegie undergraduate instructional program categories, faculty from seven associate\u27s and associate\u27s-dominant institutions (23) and faculty from nine institutions with primarily 4-yr degree programs (24). Both groups expressed the opinion that STAR had a positive impact on teaching, student learning, and engagement. The two groups reported using techniques of formative assessment and active learning with similar frequency. The mix of faculty from diverse institutions was viewed as enhancing the workshop experience. The present analysis indicates that the SI model for training faculty in scientific teaching can successfully be extended to a broad range of higher education institutions. © 2013 C. S. Gregg et al
Room Temperature CO Detection by Hybrid Porphyrin-ZnO Nanoparticles
AbstractPorphyrins are the natural candidates to the detection of carbon monoxide however the physical properties of solid-state layers of porphyrins limit their use as gas sensors mainly with mass and optical transducers. Recently we shown that the photonic properties of porphyrins, brilliantly exploited in organic solar cells, can lead to a new class of photo-activated sensors made by porphyrins coated metal oxides. Here we investigate the sensitivity to carbon monoxide of resistive sensors made by zinc oxide nanoparticles coated by a porphyrin layer. Sensors were prepared following two different routes and tested, at room temperature and in various light conditions, to CO and few volatile compounds. Results show a significant sensitivity and selectivity to CO
- …