282 research outputs found

    Liquid Bismuth Propellant Flow Sensor

    Get PDF
    Quantifying the propellant mass flow rate in liquid bismuth-fed electric propulsion systems has two challenging facets. First, the flow sensors must be capable of providing a resolvable measurement at propellant mass flow rates on the order of 10 mg/see with and uncertainty of less that 5%. The second challenge has to do with the fact that the materials from which the flow sensors are fabricated must be capable of resisting any of the corrosive effects associated with the high-temperature propellant. The measurement itself is necessary in order to properly assess the performance (thrust efficiency, Isp) of thruster systems in the laboratory environment. The hotspot sensor[I] has been designed to provide the bismuth propellant mass flow rate measurement. In the hotspot sensor, a pulse of thermal energy (derived from a current pulse and associated joule heating) is applied near the inlet of the sensor. The flow is "tagged" with a thermal feature that is convected downstream by the flowing liquid metal. Downstream, a temperature measurement is performed to detect a "ripple" in the local temperature associated with the passing "hotspot" in the propellant. By measuring the time between the upstream generation and downstream detection of the thermal feature, the flow speed can be calculated using a "time of flight" analysis. In addition, the system can be calibrated by measuring the accumulated mass exiting the system as a-function of time and correlating this with the time it takes the hotspot to convect through the sensor. The primary advantage of this technique is that it doesn't depend on an absolute measurement of temperature but, instead, relies on the observation of thermal features. This makes the technique insensitive to other externally generated thermal fluctuations. In this paper, we describe experiments performed using the hotspot flow sensor aimed at quantifying the resolution of the sensor technology. Propellant is expelled onto an electronic scale to provide an independent measure of the propellant mass flow rate as a function of time. In addition, two separate detection schemes are employed. The first uses a thermocouple to directly measure temperature in the fluid. The second involves the ,use of a fiber optic coupled to a photodiode allowing for detection of an increase in light emission from the fluid as the hotspot passes. the detection location

    Testing of an Annular Linear Induction Pump for the Fission Surface Power Technology Demonstration Unit

    Get PDF
    Results of performance testing of an annular linear induction pump that has been designed for integration into a fission surface power technology demonstration unit are presented. The pump electromagnetically pushes liquid metal (NaK) through a specially-designed apparatus that permits quantification of pump performance over a range of operating conditions. Testing was conducted for frequencies of 40, 55, and 70 Hz, liquid metal temperatures of 125, 325, and 525 C, and input voltages from 30 to 120 V. Pump performance spanned a range of flow rates from roughly 0.3 to 3.1 L/s (4.8 to 49 gpm), and pressure heads of <1 to 104 kPa (<0.15 to 15 psi). The maximum efficiency measured during testing was 5.4%. At the technology demonstration unit operating temperature of 525 C the pump operated over a narrower envelope, with flow rates from 0.3 to 2.75 L/s (4.8 to 43.6 gpm), developed pressure heads from <1 to 55 kPa (<0.15 to 8 psi), and a maximum efficiency of 3.5%. The pump was supplied with three-phase power at 40 and 55 Hz using a variable-frequency motor drive, while power at 55 and 70 Hz was supplied using a variable-frequency power supply. Measured performance of the pump at 55 Hz using either supply exhibited good quantitative agreement. For a given temperature, the peak in efficiency occurred at different flow rates as the frequency was changed, but the maximum value of efficiency was relative insensitive within 0.3% over the frequency range tested, including a scan from 45 to 78 Hz. The objectives of the FSP technology project are as follows:5 Develop FSP concepts that meet expected surface power requirements at reasonable cost with added benefits over other options. Establish a nonnuclear hardware-based technical foundation for FSP design concepts to reduce overall development risk. Reduce the cost uncertainties for FSP and establish greater credibility for flight system cost estimates. Generate the key nonnuclear products to allow Agency decision makers to consider FSP as a viable option for potential future flight development. The pump must be compatible with the liquid NaK coolant and have adequate performance to enable a viable flight system. Idaho National Laboratory (INL) was tasked with the design and fabrication of an ALIP suitable for the FSP reference mission. Under the program, a quarter-scale FSP technology demonstration is under construction to test the end-to-end conversion of simulated nuclear thermal power to usable electrical power intended to raise the entire FSP system to Technology Readiness Level 6. An ALIP for this TDU was fabricated under the direction of the INL and shipped to NASA Marshall Space Flight Center (MSFC) for testing at representative operating conditions. This pump was designed to meet the requirements of the TDU experiment. The ALIP test circuit (ATC) at MSFC, previously used to conduct performance evaluation on another ALIP6 was used to test the present TDU pump for the FSP Technology Development program

    Proof-of-Concept Experiments on a Gallium-Based Ignitron for Pulsed Power Applications

    Get PDF
    Ignitrons are electrical switching devices that operate at switching times that are on the order of microseconds, can conduct high currents of thousands of amps, and are capable of holding off tens of thousands of volts between pulses. They consist of a liquid metal pool within an evacuated tube that serves both the cathode and the source of atoms and electrons for an arc discharge. Facing the liquid metal pool is an anode suspended above the cathode, with a smaller ignitor electrode tip located just above the surface of the cathode. The ignitron can be charged to significant voltages, with a potential difference of thousands of volts between anode and cathode. When an ignition pulse is delivered from the ignitor electrode to the cathode, a small amount of the liquid metal is vaporized and subsequently ionized, with the high voltage between the anode and cathode causing the gas to bridge the gap between the two electrodes. The electrons and ions move rapidly towards the anode and cathode, respectively, with the ions liberating still more atoms from the liquid metal cathode surface as a high-current plasma arc discharge is rapidly established. This arc continues in a self-sustaining fashion until the potential difference between the anode and cathode drops below some critical value. Ignitrons have been used in a variety of pulsed power applications, including the railroad industry, industrial chemical processing, and high-power arc welding. In addition, they might prove useful in terrestrial power grid applications, serving as high-current fault switches, quickly shunting dangerous high-current or high-voltage spikes safely to ground. The motivation for this work stemmed from the fact that high-power, high-reliability, pulsed power devices like the ignitron have been used for ground testing in-space pulsed electric thruster technologies, and the continued use of ignitrons could prove advantageous to the future development and testing of such thrusters. Previous ignitron designs have used mercury as the liquid metal cathode, owing to its presence as a liquid at room temperatures and a vapor pressure of 10 Pa (75 mtorr) at room temperature. While these are favorable properties, there are obvious environmental and personal safety concerns with the storage, handling, and use of mercury and its compounds. The purpose of the present work was to fabricate and test an ignitron that used as its cathode an alternate liquid metal that was safe to handle and store. To that end, an ignitron test article that used liquid gallium as the cathode material was developed and tested. Gallium is a metal that has a melting temperature of 29.76 C, which is slightly above room temperature, and a boiling point of over 2,300 C at atmospheric pressure. This property makes gallium the element with the largest relative difference between melting and boiling points. Gallium has a limited role in biology, and when ingested, it will be subsequently processed by the body and expelled rather than accumulating to toxic levels. The next section of this Technical Memorandum (TM) provides background information on the development of mercury-based ignitrons, which serves as the starting point for the development of the gallium-based variant. Afterwards, the experimental hardware and setup used in proof-of-concept testing of a basic gallium ignitron are presented. Experimental data, consisting of discharge voltage and current waveforms as well as high-speed imaging of the gallium arc discharge in the gallium ignitron test article, are presented to demonstrate the efficacy of the concept. Discussion of the data and suggestions on improvements for future iterations of the design are presented in the final two sections of this TM

    Transport, fate and impacts of the deep plume of petroleum hydrocarbons formed during the Macondo blowout

    Get PDF
    © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Bracco, A., Paris, C. B., Esbaugh, A. J., Frasier, K., Joye, S. B., Liu, G., Polzin, K. L., & Vaz, A. C. Transport, fate and impacts of the deep plume of petroleum hydrocarbons formed during the Macondo blowout. Frontiers in Marine Science, 7, (2020): 542147, doi:10.3389/fmars.2020.542147.The 2010 Macondo oil well blowout consisted in a localized, intense infusion of petroleum hydrocarbons to the deep waters of the Gulf of Mexico. A substantial amount of these hydrocarbons did not reach the ocean surface but remained confined at depth within subsurface plumes, the largest and deepest of which was found at ∼ 1000–1200 m of depth, along the continental slope (the deep plume). This review outlines the challenges the science community overcame since 2010, the discoveries and the remaining open questions in interpreting and predicting the distribution, fate and impact of the Macondo oil entrained in the deep plume. In the past 10 years, the scientific community supported by the Gulf of Mexico Research Initiative (GoMRI) and others, has achieved key milestones in observing, conceptualizing and understanding the physical oceanography of the Gulf of Mexico along its northern continental shelf and slope. Major progress has been made in modeling the transport, evolution and degradation of hydrocarbons. Here we review this new knowledge and modeling tools, how our understanding of the deep plume formation and evolution has evolved, and how research in the past decade may help preparing the scientific community in the event of a future spill in the Gulf or elsewhere. We also summarize briefly current knowledge of the plume fate – in terms of microbial degradation and geochemistry – and impacts on fish, deep corals and mammals. Finally, we discuss observational, theoretical, and modeling limitations that constrain our ability to predict the three-dimensional movement of waters in this basin and the fate and impacts of the hydrocarbons they may carry, and we discuss research priorities to overcome them.This review was made possible by funding from the Gulf of Mexico Research Initiative (GoMRI) and is a product of the Core Area 1 Synthesis workshop. The authors have contributed research on the Gulf deep circulation and the deep plume through GoMRI-funded consortia (ECOGIG for AB, SJ and GL, C-IMAGE for CP, AV and KF, and RECOVER for AE) and one of the RFP-5 grant (KP). KP was partially supported also by NSF OCE-1536779

    Global biogeography of chemosynthetic symbionts reveals both localized and globally distributed

    Get PDF
    In the ocean, most hosts acquire their symbionts from the environment. Due to the immense spatial scales involved, our understanding of the biogeography of hosts and symbionts in marine systems is patchy, although this knowledge is essential for understanding fundamental aspects of symbiosis such as host-symbiont specificity and evolution. Lucinidae is the most species-rich and widely distributed family of marine bivalves hosting autotrophic bacterial endosymbionts. Previous molecular surveys identified location-specific symbiont types that "promiscuously" form associations with multiple divergent cooccurring host species. This flexibility of host-microbe pairings is thought to underpin their global success, as it allows hosts to form associations with locally adapted symbionts. We used metagenomics to investigate the biodiversity, functional variability, and genetic exchange among the endosymbionts of 12 lucinid host species from across the globe. We report a cosmopolitan symbiont species, Candidatus Thiodiazotropha taylori, associated with multiple lucinid host species. Ca. T. taylori has achieved more success at dispersal and establishing symbioses with lucinids than any other symbiont described thus far. This discovery challenges our understanding of symbiont dispersal and location-specific colonization and suggests both symbiont and host flexibility underpin the ecological and evolutionary success of the lucinid symbiosis

    Long Term Variability of a Black Widow's Eclipses -- A Decade of PSR J2051-0827

    Get PDF
    In this paper we report on 10\sim10 years of observations of PSR J2051-0827, at radio frequencies in the range 110--4032 MHz. We investigate the eclipse phenomena of this black widow pulsar using model fits of increased dispersion and scattering of the pulsed radio emission as it traverses the eclipse medium. These model fits reveal variability in dispersion features on timescales as short as the orbital period, and previously unknown trends on timescales of months--years. No clear patterns are found between the low-frequency eclipse widths, orbital period variations and trends in the intra-binary material density. Using polarisation calibrated observations we present the first available limits on the strength of magnetic fields within the eclipse region of this system; the average line of sight field is constrained to be 10410^{-4} G B102\lesssim B_{||} \lesssim 10^2 G, while for the case of a field directed near-perpendicular to the line of sight we find B0.3B_{\perp} \lesssim 0.3 G. Depolarisation of the linearly polarised pulses during the eclipse is detected and attributed to rapid rotation measure fluctuations of σRM100\sigma_{\text{RM}} \gtrsim 100 rad m2^{-2} along, or across, the line of sights averaged over during a sub-integration. The results are considered in the context of eclipse mechanisms, and we find scattering and/or cyclotron absorption provide the most promising explanation, while dispersion smearing is conclusively ruled out. Finally, we estimate the mass loss rate from the companion to be M˙C1012M\dot{M}_{\text{C}} \sim 10^{-12} M_\odot yr1^{-1}, suggesting that the companion will not be fully evaporated on any reasonable timescale

    Liquid Bismuth Propellant Management System for the Very High Specific Impulse Thruster with Anode Layer

    Get PDF
    Two prototype bismuth propellant feed systems were constructed and operated in conjunction with a propellant vaporizer. One system provided bismuth to a vaporizer using gas pressurization but did not include a means to measure the flow rate. The second system incorporated an electromagnetic pump to provide fine control of the hydrostatic pressure and a new type of in-line flow sensor that was developed for accurate, real-time measurement of the mass flow rate. High-temperature material compatibility was a driving design requirement for the pump and flow sensor, leading to the selection of Macor for the main body of both components. Posttest inspections of both components revealed no degradation of the material. The gas pressurization system demonstrated continuous pressure control over a range from zero to 200 torr. In separate proof-of-concept experiments, the electromagnetic pump produced a linear pressure rise as a function of current that compared favorably with theoretical pump pressure predictions, producing a pressure rise of 10 kPa at 30 A. Preliminary flow sensor operation indicated a bismuth flow rate of 6 mg/s with an uncertainty of plus or minus 6%. An electronics suite containing a real-time controller was successfully used to control the entire system, simultaneously monitoring all power supplies and performing data acquisition duties
    corecore