11 research outputs found

    MCMC Computations for Bayesian Mixture Models Using Repulsive Point Processes

    No full text
    Repulsive mixture models have recently gained popularity for Bayesian cluster detection. Compared to more traditional mixture models, repulsive mixture models produce a smaller number of well-separated clusters. The most commonly used methods for posterior inference either require to fix a priori the number of components or are based on reversible jump MCMC computation. We present a general framework for mixture models, when the prior of the “cluster centers” is a finite repulsive point process depending on a hyperparameter, specified by a density which may depend on an intractable normalizing constant. By investigating the posterior characterization of this class of mixture models, we derive a MCMC algorithm which avoids the well-known difficulties associated to reversible jump MCMC computation. In particular, we use an ancillary variable method, which eliminates the problem of having intractable normalizing constants in the Hastings ratio. The ancillary variable method relies on a perfect simulation algorithm, and we demonstrate this is fast because the number of components is typically small. In several simulation studies and an application on sociological data, we illustrate the advantage of our new methodology over existing methods, and we compare the use of a determinantal or a repulsive Gibbs point process prior model. Supplementary files for this article are available online

    MCMC Computations for Bayesian Mixture Models Using Repulsive Point Processes

    No full text
    Repulsive mixture models have recently gained popularity for Bayesian cluster detection. Compared to more traditional mixture models, repulsive mixture models produce a smaller number of well-separated clusters. The most commonly used methods for posterior inference either require to fix a priori the number of components or are based on reversible jump MCMC computation. We present a general framework for mixture models, when the prior of the “cluster centers” is a finite repulsive point process depending on a hyperparameter, specified by a density which may depend on an intractable normalizing constant. By investigating the posterior characterization of this class of mixture models, we derive a MCMC algorithm which avoids the well-known difficulties associated to reversible jump MCMC computation. In particular, we use an ancillary variable method, which eliminates the problem of having intractable normalizing constants in the Hastings ratio. The ancillary variable method relies on a perfect simulation algorithm, and we demonstrate this is fast because the number of components is typically small. In several simulation studies and an application on sociological data, we illustrate the advantage of our new methodology over existing methods, and we compare the use of a determinantal or a repulsive Gibbs point process prior model. Supplementary files for this article are available online

    MCMC computations for Bayesian mixture models using repulsive point processes

    No full text
    Repulsive mixture models have recently gained popularity for Bayesian cluster detection. Compared to more traditional mixture models, repulsive mixture models produce a smaller number of well separated clusters. The most commonly used methods for posterior inference either require to fix a priori the number of components or are based on reversible jump MCMC computation. We present a general framework for mixture models, when the prior of the ‘cluster centres’ is a finite repulsive point process depending on a hyperparameter, specified by a density which may depend on an intractable normalizing constant. By investigating the posterior characterization of this class of mixture models, we derive a MCMC algorithm which avoids the well-known difficulties associated to reversible jump MCMC computation. In particular, we use an ancillary variable method, which eliminates the problem of having intractable normalizing constants in the Hastings ratio. The ancillary variable method relies on a perfect simulation algorithm, and we demonstrate this is fast because the number of components is typically small. In several simulation studies and an application on sociological data, we illustrate the advantage of our new methodology over existing methods, and we compare the use of a determinantal or a repulsive Gibbs point process prior model

    Replication data for: Measuring Discounting without Measuring Utility

    No full text
    We introduce a new method to measure the temporal discounting of money. Unlike preceding methods, our method requires neither knowledge nor measurement of utility. It is easier to implement, clearer to subjects, and requires fewer measurements than existing methods

    Data for "High concentration factor diffractive microlenses integrated with CMOS single-photon avalanche diode detector arrays for fill-factor improvement"

    No full text
    The comma separated value (CSV) files in this dataset will allow the reader to recreate the corresponding figures in the paper "High concentration factor diffractive microlenses integrated with CMOS single-photon avalanche diode detector arrays for fill-factor improvement", Applied Optics, 2020

    Additional file 1 of Clinical complexity and impact of the ABC (Atrial fibrillation Better Care) pathway in patients with atrial fibrillation: a report from the ESC-EHRA EURObservational Research Programme in AF General Long-Term Registry

    No full text
    Additional file 1: Table S1. Items Included into the Frailty Index. Table S2. Baseline Characteristics of the Cohort. Table S3. Cox Regression for the risk of major outcomes according to clinical complexity and subgroups. Table S4. Baseline characteristics according to cluster allocation. Figure S1. Kaplan Meier Curves for the risk of MACE according to cluster analysis. Figure S2. Kaplan Meier Curves for the risk of composite outcome according to cluster analysis. Figure S3. Delay of Event analysis for MACE, ABC adherent vs. non-adherent in cluster 1 subgroup. Figure S4. Delay of Event analysis for Composite Outcome, ABC adherent vs. non-adherent in cluster 1 subgroup

    Data from: Crop pests and predators exhibit inconsistent responses to surrounding landscape composition

    No full text
    AbstractThe idea that noncrop habitat enhances pest control and represents a win–win opportunity to conserve biodiversity and bolster yields has emerged as an agroecological paradigm. However, while noncrop habitat in landscapes surrounding farms sometimes benefits pest predators, natural enemy responses remain heterogeneous across studies and effects on pests are inconclusive. The observed heterogeneity in species responses to noncrop habitat may be biological in origin or could result from variation in how habitat and biocontrol are measured. Here, we use a pest-control database encompassing 132 studies and 6,759 sites worldwide to model natural enemy and pest abundances, predation rates, and crop damage as a function of landscape composition. Our results showed that although landscape composition explained significant variation within studies, pest and enemy abundances, predation rates, crop damage, and yields each exhibited different responses across studies, sometimes increasing and sometimes decreasing in landscapes with more noncrop habitat but overall showing no consistent trend. Thus, models that used landscape-composition variables to predict pest-control dynamics demonstrated little potential to explain variation across studies, though prediction did improve when comparing studies with similar crop and landscape features. Overall, our work shows that surrounding noncrop habitat does not consistently improve pest management, meaning habitat conservation may bolster production in some systems and depress yields in others. Future efforts to develop tools that inform farmers when habitat conservation truly represents a win–win would benefit from increased understanding of how landscape effects are modulated by local farm management and the biology of pests and their enemies

    Data from: Estimating the reproducibility of psychological science

    No full text
    This record contains the underlying research data for the publication "Estimating the reproducibility of psychological science" and the full-text is available from: https://ink.library.smu.edu.sg/lkcsb_research/5257Reproducibility is a defining feature of science, but the extent to which it characterizes current research is unknown. We conducted replications of 100 experimental and correlational studies published in three psychology journals using high-powered designs and original materials when available. Replication effects were half the magnitude of original effects, representing a substantial decline. Ninety-seven percent of original studies had statistically significant results. Thirty-six percent of replications had statistically significant results; 47% of original effect sizes were in the 95% confidence interval of the replication effect size; 39% of effects were subjectively rated to have replicated the original result; and if no bias in original results is assumed, combining original and replication results left 68% with statistically significant effects. Correlational tests suggest that replication success was better predicted by the strength of original evidence than by characteristics of the original and replication teams
    corecore