5 research outputs found

    Microstructural evaluation of suspension thermally sprayed WC-Co nanocomposite coatings.

    Get PDF
    Microstructural and sliding wear evaluations of nanostructured coatings deposited by Suspension High Velocity Oxy-Fuel (S-HVOF) spraying were conducted in as-sprayed and HIPed (Hot Isostatically Pressed) conditions. S-HVOF coatings were nanostructured via ball milling of the WC-12Co start powder, and deposited via an aqueous based suspension using modified HVOF (TopGun) spraying. Microstructural evaluations of these hardmetal coatings included TEM (Transmission Electron Microscopy), X-ray Diffraction (XRD) and Scanning Electron Microscopy (SEM). Sliding wear tests were conducted using a ball-on-flat test rig. Results indicated that nanostructured features inherited from the start powder in S-HVOF spraying were retained in the resulting coatings. The decarburisation of WC due to a higher surface area to volume ratio was also observed in the S-HVOF coatings. Nanostructured and amorphous phases caused by the high cooling rates during thermal spraying crystallized into complex eta-phases after the HIPing treatment. Sliding wear performance indicated that the coating wear was lower for the HIPed coatings

    Influence of post-treatment on the microstructural and tribomechanical properties of suspension thermally sprayed WC-12 wt%Co nanocomposite coatings.

    Get PDF
    The potential to improve the tribomechanical performance of HVOF-sprayed WC-12Co coatings was studied by using aqueous WC-12Co suspensions as feed-stock. Both as-sprayed and hot-isostatic-pressed (HIPed) coatings were studied. Mathematical models of wear rate based on the structure property relationships, even for the conventionally sprayed WC-Co hardmetal coatings, are at best based on the semiempirical approach. This paper aims to develop these semiempirical mathematical models for suspension sprayed nanocomposite coatings in as-sprayed and heat-treated (HIPed) conditions. Microstructural evaluations included transmission electron microscopy, X-ray diffraction and scanning electron microscopy equipped with energy-dispersive X-ray spectroscopy. The nanohardness and modulus of the coated specimens were investigated using a diamond Berkovich nanoindenter. Sliding wear tests were conducted using a ball-on-flat test rig. Results indicated that the HIPing post-treatment resulted in crystallization of amorphous coating phases and increase in elastic modulus and hardness. Influence of these changes in the wear mechanisms and wear rate is discussed. Results are also compared with conventionally sprayed high-velocity oxy-fuel hardmetal WC-Co coatings
    corecore