4,099 research outputs found

    Quantum Hall Effect at Finite Temperatures

    Full text link
    Recent work on the temperature-driven delocalization in the quantum Hall regime is reviewed, with emphasis on the role of electron-electron interactions and the correlation properties of disorder. We have stressed (i) the crucial role of the Coulomb interaction in the integer quantum Hall effect; (ii) the classical aspects of electron dynamics in samples with long-range disorder.Comment: 10 pages, LaTeX, uses sprocl.sty which is included, talk given at the 12th conference on High Magnetic Fields in Semiconductor Physics held in Wuerzburg on July 28 - Aug 02, 199

    Transport of charge-density waves in the presence of disorder: Classical pinning vs quantum localization

    Full text link
    We consider the interplay of the elastic pinning and the Anderson localization in the transport properties of a charge-density wave in one dimension, within the framework of the Luttinger model in the limit of strong repulsion. We address a conceptually important issue of which of the two disorder-induced phenomena limits the mobility more effectively. We argue that the interplay of the classical and quantum effects in transport of a very rigid charge-density wave is quite nontrivial: the quantum localization sets in at a temperature much smaller than the pinning temperature, whereas the quantum localization length is much smaller than the pinning length.Comment: 4 page

    Electron transport in disordered Luttinger liquid

    Full text link
    We study the transport properties of interacting electrons in a disordered quantum wire within the framework of the Luttinger liquid model. We demonstrate that the notion of weak localization is applicable to the strongly correlated one-dimensional electron system. Two alternative approaches to the problem are developed, both combining fermionic and bosonic treatment of the underlying physics. We calculate the relevant dephasing rate, which for spinless electrons is governed by the interplay of electron-electron interaction and disorder, thus vanishing in the clean limit. Our approach provides a framework for a systematic study of mesoscopic effects in strongly correlated electron systems.Comment: 41 pages, 24 figures, small corrections, more compac

    Many-body delocalization transition and relaxation in a quantum dot

    Full text link
    We revisit the problem of quantum localization of many-body states in a quantum dot and the associated problem of relaxation of an excited state in a finite correlated electron system. We determine the localization threshold for the eigenstates in Fock space. We argue that the localization-delocalization transition (which manifests itself, e.g., in the statistics of many-body energy levels) becomes sharp in the limit of a large dimensionless conductance (or, equivalently, in the limit of weak interaction). We also analyze the temporal relaxation of quantum states of various types (a "hot-electron state", a "typical" many-body state, and a single-electron excitation added to a "thermal state") with energies below, at, and above the transition.Comment: 16+6 pages, 2 figures; comments, additional explanations, references, and Supplemental Material adde

    Microwave photoconductivity of a 2D electron gas: Mechanisms and their interplay at high radiation power

    Full text link
    We develop a systematic theory of microwave-induced oscillations in the magnetoresistivity of a two-dimensional electron gas, focusing on the regime of strongly overlapping Landau levels. At linear order in microwave power, two novel mechanisms of the oscillations (``quadrupole'' and ``photovoltaic'') are identified, in addition to those studied before (``displacement'' and ``inelastic''). The quadrupole and photovoltaic mechanisms are shown to be the only ones that give rise to oscillations in the nondiagonal part of the photoconductivity tensor. In the diagonal part, the inelastic contribution dominates at moderate microwave power, while at elevated power the other mechanisms become relevant. We demonstrate the crucial role of feedback effects, which lead to a strong interplay of the four mechanisms in the nonlinear photoresponse and yield, in particular, a nonmonotonic power dependence of the photoconductivity, narrowing of the magnetoresonances, and a nontrivial structure of the Hall photoresponse. At ultrahigh power, all effects related to the Landau quantization decay due to a combination of the feedback and multiphoton effects, restoring the classical Drude conductivity.Comment: 26 pages, 10 figures. V2: published version (typos corrected, references updated

    Cyclotron resonance harmonics in the ac response of a 2D electron gas with smooth disorder

    Full text link
    The frequency-dependent conductivity σxx(ω)\sigma_{xx}(\omega) of 2D electrons subjected to a transverse magnetic field and smooth disorder is calculated. The interplay of Landau quantization and disorder scattering gives rise to an oscillatory structure that survives in the high-temperature limit. The relation to recent experiments on photoconductivity by Zudov {\it et al.} and Mani {\it et al.} is discussed.Comment: 4 pages, 2 figures; final version to appear in PR

    Picture-changing operators and space-time supersymmetry

    Get PDF
    We explore geometrical properties of fermionic vertex operators for a NSR superstring in order to establish connection between worldsheet and target space supersymmetries. The mechanism of picture-changing is obtained as a result of imposing certain constraints on a world-sheet gauge group of the NSR theory. It is found that picture-changing operators of various integer ghost numbers form a polynomial ring. By using properties of the picture-changing formalism we establish connection between the NSR and GS superstring theories. We explore the properties of the \kappa-symmetry in the NSR formalism and show that it leads to some new identities between correlation functions

    On the NSR formulation of String Theory on AdS5XS5AdS_{5} X S^{5}

    Get PDF
    We discuss the NSR formulation of the superstring action on AdS_5 X S^5 proposed recently by Kallosh and Tseytlin in the Green-Schwarz formalism.We show that the stress-energy tensor corresponding to the NSR action for AdS superstring contains the branelike terms, corresponding to exotic massless vertex operators (refered to as the branelike vertices). The corresponding sigma-model action has the manifest SO(1,3) X SO(6) invariance of AdS_5 X S^5. We argue that adding the branelike terms is equivalent to curving the space-time to obtain the AdS_5 X S^5 background. We commence the study of the proposed NSR sigma-model by analyzing the scattering amplitudes involving the branelike vertex operators.The analysis shows quite an unusual momentum dependence of these scattering amplitudes

    Ultranarrow resonance in Coulomb drag between quantum wires at coinciding densities

    Full text link
    We investigate the influence of the chemical potential mismatch Δ\Delta (different electron densities) on Coulomb drag between two parallel ballistic quantum wires. For pair collisions, the drag resistivity ρD(Δ)\rho_{\rm D}(\Delta) shows a peculiar anomaly at Δ=0\Delta=0 with ρD\rho_{\rm D} being finite at Δ=0\Delta=0 and vanishing at any nonzero Δ\Delta. The "bodyless" resonance in ρD(Δ)\rho_{\rm D}(\Delta) at zero Δ\Delta is only broadened by processes of multi-particle scattering. We analyze Coulomb drag for finite Δ\Delta in the presence of both two- and three-particle scattering within the kinetic equation framework, focusing on a Fokker-Planck picture of the interaction-induced diffusion in momentum space of the double-wire system. We describe the dependence of ρD\rho_{\rm D} on Δ\Delta for both weak and strong intrawire equilibration due to three-particle scattering.Comment: 21 pages (+2.5 pages Suppl. Mat.), 2 figures; additional explanation

    Emergence of domains and nonlinear transport in the zero-resistance state

    Full text link
    We study transport in the domain state, the so-called zero-resistance state, that emerges in a two-dimensional electron system in which the combined action of microwave radiation and magnetic field produces a negative absolute conductivity. We show that the voltage-biased system has a rich phase diagram in the system size and voltage plane, with second- and first-order transitions between the domain and homogeneous states for small and large voltages, respectively. We find the residual negative dissipative resistance in the stable domain state.Comment: 5 pages, 4 figure
    corecore