2,728 research outputs found

    Large-scale Ferrofluid Simulations on Graphics Processing Units

    Full text link
    We present an approach to molecular-dynamics simulations of ferrofluids on graphics processing units (GPUs). Our numerical scheme is based on a GPU-oriented modification of the Barnes-Hut (BH) algorithm designed to increase the parallelism of computations. For an ensemble consisting of one million of ferromagnetic particles, the performance of the proposed algorithm on a Tesla M2050 GPU demonstrated a computational-time speed-up of four order of magnitude compared to the performance of the sequential All-Pairs (AP) algorithm on a single-core CPU, and two order of magnitude compared to the performance of the optimized AP algorithm on the GPU. The accuracy of the scheme is corroborated by comparing the results of numerical simulations with theoretical predictions

    The static QQˉQ\bar Q interaction at small distances and OPE violating terms

    Full text link
    Nonperturbative contribution to the one-gluon exchange produces a universal linear term in the static potential at small distances ΔV=6Ncαsσr2π\Delta V=\frac{6N_c \alpha_s \sigma r}{2\pi}. Its role in the resolution of long--standing discrepancies in the fine splitting of heavy quarkonia and improved agreement with lattice data for static potentials is discussed, as well as implications for OPE violating terms in other processes.Comment: Latex, 5 pages, to be published in JETP Let

    Frequency and Phase Synchronization in Neuromagnetic Cortical Responses to Flickering-Color Stimuli

    Full text link
    In our earlier study dealing with the analysis of neuromagnetic responses (magnetoencephalograms - MEG) to flickering-color stimuli for a group of control human subjects (9 volunteers) and a patient with photosensitive epilepsy (a 12-year old girl), it was shown that Flicker-Noise Spectroscopy (FNS) was able to identify specific differences in the responses of each organism. The high specificity of individual MEG responses manifested itself in the values of FNS parameters for both chaotic and resonant components of the original signal. The present study applies the FNS cross-correlation function to the analysis of correlations between the MEG responses simultaneously measured at spatially separated points of the human cortex processing the red-blue flickering color stimulus. It is shown that the cross-correlations for control (healthy) subjects are characterized by frequency and phase synchronization at different points of the cortex, with the dynamics of neuromagnetic responses being determined by the low-frequency processes that correspond to normal physiological rhythms. But for the patient, the frequency and phase synchronization breaks down, which is associated with the suppression of cortical regulatory functions when the flickering-color stimulus is applied, and higher frequencies start playing the dominating role. This suggests that the disruption of correlations in the MEG responses is the indicator of pathological changes leading to photosensitive epilepsy, which can be used for developing a method of diagnosing the disease based on the analysis with the FNS cross-correlation function.Comment: 21 pages, 14 figures; submitted to "Laser Physics", 2010, 2

    Decay constants of the heavy-light mesons from the field correlator method

    Get PDF
    Meson Green's functions and decay constants fΓf_{\Gamma} in different channels Γ\Gamma are calculated using the Field Correlator Method. Both, spectrum and fΓf_\Gamma, appear to be expressed only through universal constants: the string tension σ\sigma, αs\alpha_s, and the pole quark masses. For the SS-wave states the calculated masses agree with the experimental numbers within ±5\pm 5 MeV. For the DD and DsD_s mesons the values of fP(1S)f_{\rm P} (1S) are equal to 210(10) and 260(10) MeV, respectively, and their ratio fDs/fDf_{D_s}/f_D=1.24(3) agrees with recent CLEO experiment. The values fP(1S)=182,216,438f_{\rm P}(1S)=182, 216, 438 MeV are obtained for the BB, BsB_s, and BcB_c mesons with the ratio fBs/fBf_{B_s}/f_B=1.19(2) and fD/fBf_D/f_B=1.14(2). The decay constants fP(2S)f_{\rm P}(2S) for the first radial excitations as well as the decay constants fV(1S)f_{\rm V}(1S) in the vector channel are also calculated. The difference of about 20% between fDsf_{D_s} and fDf_D, fBsf_{B_s} and fBf_B directly follows from our analytical formulas.Comment: 37 pages, 10 tables, RevTeX

    Measurement of the η\eta -η\eta' mixing angle in π\pi^{-} and KK^{-} beams with GAMS-4π4\pi Setup

    Full text link
    The results of mixing angle measurement for η\eta', η\eta mesons generated in charge exchange reactions with π\pi^{-} and KK^{-} beams are preseneted. When the η\eta', η\eta mesons are described in nonstrange(NS)--strange(S) quark basis the π\pi^{-} and KK^{-} beams allow to study ηq>|\eta_{q}> and ηs>|\eta_{s}> parts of the meson wave function. The cross section ratio at t=0t'=0 (GeV/c)2^{2} in the π\pi^{-} beam is Rπ(η/η)=0.56±0.04R_{\pi}(\eta'/\eta)= 0.56 \pm 0.04, results in mixing angle ϕP=(36.8±1.)o\phi_{P} = (36.8 \pm 1.)^{o} . For KK^{-} beam the ratio is RK(η/η)=1.30±0.16R_{K}(\eta'/\eta)= 1.30 \pm 0.16. It was found that gluonium content in η\eta' is sin2ψG=0.15±0.06\sin^{2}\psi_{G}= 0.15 \pm 0.06. The experiment was carried out with GAMS-4π\pi Setup.Comment: 6 pages, 4 figures, 1 table, to be submitted in European physical journal C. Minor changes, the Bibliography extende
    corecore