35 research outputs found

    Class I methanol masers in low-mass star formation regions

    Full text link
    Four Class I maser sources were detected at 44, 84, and 95 GHz toward chemically rich outflows in the regions of low-mass star formation NGC 1333I4A, NGC 1333I2A, HH25, and L1157. One more maser was found at 36 GHz toward a similar outflow, NGC 2023. Flux densities of the newly detected masers are no more than 18 Jy, being much lower than those of strong masers in regions of high-mass star formation. The brightness temperatures of the strongest peaks in NGC 1333I4A, HH25, and L1157 at 44 GHz are higher than 2000 K, whereas that of the peak in NGC 1333I2A is only 176 K. However, rotational diagram analysis showed that the latter source is also a maser. The main properties of the newly detected masers are similar to those of Class I methanol masers in regions of massive star formation. The former masers are likely to be an extension of the latter maser population toward low luminosities of both the masers and the corresponding YSOs.Comment: 5 pages, 1 figure, Proc. IAU Symp. 287 "Cosmic Masers: from OH to H0". LSR velocities of the HH25 masers, which are presented in Table 1, are correcte

    Self-Assembly of Supramolecular Triblock Copolymer Complexes

    Get PDF
    Four different poly(tert-butoxystyrene)-b-polystyrene-b-poly(4-vinylpyridine) (PtBOS-b-PS-b-P4VP) linear triblock copolymers, with the P4VP weight fraction varying from 0.08 to 0.39, were synthesized via sequential anionic polymerization. The values of the unknown interaction parameters between styrene and tert-butoxystyrene and between tert-butoxystyrene and 4-vinylpyridine were determined from random copolymer blend miscibility studies and found to satisfy 0.031<χS,tBOS<0.034 and 0.39<χ4VP,tBOS<0.43, the latter being slightly larger than the known 0.30<χS,4VP≤0.35 value range. All triblock copolymers synthesized adopted a P4VP/PS core/shell cylindrical self-assembled morphology. From these four triblock copolymers supramolecular complexes were prepared by hydrogen bonding a stoichiometric amount of pentadecylphenol (PDP) to the P4VP blocks. Three of these complexes formed a triple lamellar ordered state with additional short length scale ordering inside the P4VP(PDP) layers. The self-assembled state of the supramolecular complex based on the triblock copolymer with the largest fraction of P4VP consisted of alternating layers of PtBOS and P4VP(PDP) layers with PS cylinders inside the latter layers. The difference in morphology between the triblock copolymers and the supramolecular complexes is due to two effects: (i) a change in effective composition and, (ii) a reduction in interfacial tension between the PS and P4VP containing domains. The small angle X-ray scattering patterns of the supramolecules systems are very temperature sensitive. A striking feature is the disappearance of the first order scattering peak of the triple lamellar state in certain temperature intervals, while the higher order peaks (including the third order) remain. This is argued to be due to the thermal sensitivity of the hydrogen bonding and thus directly related to the very nature of these systems.

    Dynamic models of cultivator spring tine performance

    No full text
    The article presents results of spring-tine cultivator blade movement modeling. The basic equation of terraelasticity is taken as the initial one. The new model takes into account the spring tine configuration and the vibration mode. It is noted that the model becomes multifrequent. The field reserach confirmed multifrequency and mixed nature of the spring tine vibration spectrum. It is found that the frequency spectrum with technologically relevant vibration accelerations can be more than 1000 Hz. The authors make a conclusion that it is necessary to use high frequencies to improve the quality of spring-tine cultivator blade performance

    Dynamic models of cultivator spring tine performance

    No full text
    The article presents results of spring-tine cultivator blade movement modeling. The basic equation of terraelasticity is taken as the initial one. The new model takes into account the spring tine configuration and the vibration mode. It is noted that the model becomes multifrequent. The field reserach confirmed multifrequency and mixed nature of the spring tine vibration spectrum. It is found that the frequency spectrum with technologically relevant vibration accelerations can be more than 1000 Hz. The authors make a conclusion that it is necessary to use high frequencies to improve the quality of spring-tine cultivator blade performance
    corecore