3 research outputs found

    Self-amplifying RNA SARS-CoV-2 lipid nanoparticle vaccine candidate induces high neutralizing antibody titers in mice

    Get PDF
    The spread of the SARS-CoV-2 into a global pandemic within a few months of onset motivates the development of a rapidly scalable vaccine. Here, we present a self-amplifying RNA encoding the SARS-CoV-2 spike protein encapsulated within a lipid nanoparticle (LNP) as a vaccine. We observe remarkably high and dose-dependent SARS-CoV-2 specific antibody titers in mouse sera, as well as robust neutralization of both a pseudo-virus and wild-type virus. Upon further characterization we find that the neutralization is proportional to the quantity of specific IgG and of higher magnitude than recovered COVID-19 patients. saRNA LNP immunizations induce a Th1-biased response in mice, and there is no antibody-dependent enhancement (ADE) observed. Finally, we observe high cellular responses, as characterized by IFN-γ production, upon re-stimulation with SARS-CoV-2 peptides. These data provide insight into the vaccine design and evaluation of immunogenicity to enable rapid translation to the clinic

    Polymeric and lipid nanoparticles for delivery of self-amplifying RNA vaccines

    Get PDF
    Self-amplifying RNA (saRNA) is a next-generation vaccine platform, but like all nucleic acids, requires a delivery vehicle to promote cellular uptake and protect the saRNA from degradation. To date, delivery platforms for saRNA have included lipid nanoparticles (LNP), polyplexes and cationic nanoemulsions; of these LNP are the most clinically advanced with the recent FDA approval of COVID-19 based-modified mRNA vaccines. While the effect of RNA on vaccine immunogenicity is well studied, the role of biomaterials in saRNA vaccine effectiveness is under investigated. Here, we tested saRNA formulated with either pABOL, a bioreducible polymer, or LNP, and characterized the protein expression and vaccine immunogenicity of both platforms. We observed that pABOL-formulated saRNA resulted in a higher magnitude of protein expression, but that the LNP formulations were overall more immunogenic. Furthermore, we observed that both the helper phospholipid and route of administration (intramuscular versus intranasal) of LNP impacted the vaccine immunogenicity of two model antigens (influenza hemagglutinin and SARS-CoV-2 spike protein). We observed that LNP administered intramuscularly, but not pABOL or LNP administered intranasally, resulted in increased acute interleukin-6 expression after vaccination. Overall, these results indicate that delivery systems and routes of administration may fulfill different delivery niches within the field of saRNA genetic medicines

    Detection and typing of human enteroviruses from clinical samples by entire-capsid next generation sequencing

    No full text
    There are increasing concerns of infections by enteroviruses (EVs) causing severe disease in humans. EV diagnostic laboratory methods show differences in sensitivity and specificity as well as the level of genetic information provided. We examined a detection method for EVs based on next generation sequencing (NGS) analysis of amplicons covering the entire capsid coding region directly synthesized from clinical samples. One hundred and twelve clinical samples from England; previously shown to be positive for EVs, were analyzed. There was high concordance between the results obtained by the new NGS approach and those from the conventional Sanger method used originally with agreement in the serotypes identified in the 83 samples that were typed by both methods. The sensitivity and specificity of the NGS method compared to those of the conventional Sanger sequencing typing assay were 94.74% (95% confidence interval, 73.97% to 99.87%) and 97.85% (92.45% to 99.74%) for Enterovirus A, 93.75% (82.80% to 98.69%) and 89.06% (78.75% to 95.49%) for Enterovirus B, 100% (59.04% to 100%) and 98.10% (93.29% to 99.77%) for Enterovirus C, and 100% (75.29% to 100%) and 100% (96.34% to 100%) for Enterovirus D. The NGS method identified five EVs in previously untyped samples as well as additional viruses in some samples, indicating co-infection. This method can be easily expanded to generate whole-genome EV sequences as we show here for EV-D68. Information from capsid and whole-genome sequences is critical to help identifying the genetic basis for changes in viral properties and establishing accurate spatial-temporal associations between EV strains of public health relevance
    corecore