13 research outputs found

    Polypropylene matrix composite with charcoal filler

    No full text
    Purpose: The aim of the article is to present the thermal, electrical and mechanical properties of the produced polymer composites with a filler in the form of charcoal powder. Design/methodology/approach: The tests were carried out on samples of pure polypropylene (PP) and polymer composites, the matrix of which is polypropylene (PP), and the filler was charcoal powder with a volume fraction of 10%, 20%, 30%, 40% and 50%. The tested polymer composites in the form of granules were produced by extrusion, and then standardised test profiles were made by injection moulding. Findings: The hardness of the tested composites was determined by the Shore D method, the grain size distribution of the filler used was determined using the laser method and its thermal stability was tested using the TGA thermogravimetric analysis. The volume and surface resistivity were also determined and the density was determined. It was found that the charcoal powder used as a filler is characterised by high thermal stability - up to 600°C - and with an increase in its volume share in the polymer matrix, the hardness and density of the produced composites increases. Practical implications: The tested composites can be used as structural composites for complex elements requiring high hardness and strength. Originality/value: The research results indicate the possibility of using charcoal as a filler in polymer matrix, which, due to its low production cost, may be an alternative to expensive carbon fillers

    Polypropylene-Matrix Polymer Composites with Natural Filler

    No full text
    Polymer composite materials based on the Moplen HP400R polypropylene matrix with a filler from walnut shell flour with 30, 40 and 50% content and 200-315 μm and 315-443 μm fraction were produced by the injection method. The effect of filler content was analysed on the processing properties of the composites such as: MFR Melt Flow Rate and the MVR Melt Volume-flow Rate, as well as the temperature of the filler flour decomposition using the TGA thermogravimetric analysis method. The following was also determined: density, hardness, tensile strength and stiffness modulus of elasticity of the materials in question. The obtained composite material was characterised by low density, which increased with the rising filler content. It was found that the applied natural filler has increased the hardness and stiffness modulus of the composite and decreased the tensile strength

    Thermal analysis of matrix composite reinforced with Al2O3 particles

    No full text
    Purpose: The aim of this paper is to present a modern manufacturing method of production and compare the thermal, mechanical, properties of composite materials with aluminium alloy matrix reinforced by Al2O3 particles. Design/methodology/approach: The material for investigation was manufactured by the method of powder metallurgy (consolidation, pressing, hot concurrent extrusion of powder mixtures of aluminium EN AW-AlCu4Mg1 (A) and ceramic particles Al2O3). The amount of the added powder was in the range of 5 mass.%, 10 mass.% and 15 mass.%. Findings: The received results concerning the enhancement of hardness, which show the possibility of obtaining the MMC composite materials with required microstructure, influencing the properties of the new elaborated composite materials components. Concerning the thermal properties, especially the linear thermal expansion coefficient was measured, as well as the dilatometric change of the sample length was analysed. Practical implications: Concerning practical implications it can be stated that the tested composite materials can be applied among others in the transportation industry, but it requires additional research. Originality/value: The received results show the possibility of obtaining new composite materials with controlled and required microstructure with possible practical implications

    Polimers compoistes with natural filler

    No full text
    W ostatnich kilkunastu lat można zauważyć wzrost zainteresowania materiałami kompozytowymi WPC. W artykule przedstawiono charakterystykę tych materiałów wzmacnianych naturalnymi surowcami. Istotną ich zaletą jest między innymi możliwość otrzymywania kompozytów tradycyjnymi metodami przetwórstwa plastycznego (wytłaczania i wtryskiwania). Ze względu do dobre własności wytrzymałościowe i użytkowe, a także atrybuty wizualne, znalazły zastosowanie na deski tarasowe, place zabaw, balustrady, pokrycia dachowe itp.During last years a growing interest could be noticed in WPC composite materials. It is characteristics of these materials reinforced with natural raw materials presented in this article. Definitelly crucial advantage is, among others, the possibility of obtaining composites by traditional methods of plastic processing (extrusion and injection). Due to the good mechanical and functional properties, as well as visual attributes, they were applied to patio boards, playgrounds, balustrades, roof coverings, etc

    Constructional polymer composites with carbon fillers

    No full text
    W artykule przedstawiono charakterystykę kompozytów polimerowych z napełniaczami węglowymi. Materiały te są coraz częściej stosowane jako materiały konstrukcyjne, ze względu na swoje ciekawe właściwości, mogą stanowić konkurencję, w niektórych przypadkach nawet dla stali węglowych. W niniejszej pracy skupiono się na charakterystyce stosowanych napełniaczy węglowych: włókna węglowe i nanorurki węglowe, sadza, grafit, grafen, czysty węgiel kamienny i jego odmiany. Przedstawiono ich wpływ na właściwości różnych osnów polimerowych w zależności od zawartości napełniacza oraz możliwości aplikacyjne powstałych kompozytów.The paper presents the polymer composites with carbon fillers characterization. These materials are more and more often used as construction materials, because of their interesting properties, they can competitive, in some cases even with carbon steels. This paper focuses on the characterization of: carbon fibers, carbon nanotubes, carbon black, graphite, graphene, fine coal and it's varieties as carbon fillers phase. Their influence on the properties of various polymer matrices, depends on the filler content and application possibilities of the obtained composites were presented

    Application of anodization process for cast aluminium surface properties enhancement

    No full text
    An huge interest is observed in last years in metal matrix composite, mostly light metal based, which have found their applications in many industry branches, among others in the aircraft industry, automotive-, and armaments ones, as well as in electrical engineering and electronics, where one of the most important issue is related to the corrosion resistance, especially on the surface layer of the used aluminium alloys. This elaboration presents the influence of ceramic phase on the corrosion resistance, quality of the surface layer its thickness and structure of an anodic layer formed on aluminium alloys. As test materials it was applied the aluminium alloys Al-Si-Cu and Al-Cu-Mg, for which heat treatment processes and corrosion tests were carried out. It was presented herein grindability test results and metallographic examination, as well. Hardness of the treated alloys with those ones subjected to corrosion process were compared

    Influence of aluminium alloy anodizing and casting methods on structure and functional properties

    No full text
    This paper presents the influence of casting method and anodic treatment parameters on thickness and structure of an anodic layer formed on aluminium alloys. As test materials was used the aluminium alloy AlSi9Cu3, which was adopted to the casting process and anodic treatment. In this paper are presented the wear test results and metallographic examination, aswell as hardness of non-anodised and anodised alloys subjected to anodising process.The investigations were performed using light and electron microscopy (AFM) for the microstructure determination. The morphology and size of the layer was also possible to determine. The anodising conditions for surface hardening and itsinfluence on properties was analysed. The structure of the surface laser tray changes in a way, that there is a different thicknessof the produced layer. The aluminium samples were examined in terms of metallography using the optical microscope withdifferent image techniques as well as light microscope. Improving the anodization technology with appliance of differentanodising conditions. Some other investigation should be performed in the future, but the knowledge found in this researchconcerning the proper process parameters for each type of alloy shows an interesting investigation direction. The combinationof metallographic investigation for cast aluminium alloys - including electron microscope investigation - and anodisingparameters makes the investigation very attractive for automobile industry, aviation industry, and others, where aluminium alloys plays an important role

    Microstructure and Service Properties of Copper Alloys

    No full text
    This elaboration shows the effect of combined heat treatment and cold working on the structure and utility properties of alloyed copper. As the test material, alloyed copper CuTi4 was employed. The samples were subjected to treatment according to the following schema: 1st variant – supersaturation and ageing, 2nd variant – supersaturation, cold rolling and ageing. The paper presents the results of microstructure, hardness, and abrasion resistance. The analysis of the wipe profile geometry was realized using a Zeiss LSM 5 Exciter confocal microscope. Cold working of the supersaturated solid solution affects significantly its hardness but the cold plastic deformation causes deterioration of the wear resistance of the finally aged CuTi4 alloy

    Microstructure and service properties of copper alloys

    No full text
    This elaboration shows the effect of combined heat treatment and cold working on the structure and utility properties of alloyed copper. As the test material, alloyed copper CuTi4 was employed. The samples were subjected to treatment according to the following schema: 1st variant - supersaturation and ageing, 2nd variant - supersaturation, cold rolling and ageing. The paper presents the results of inicrostructure, hardness, and abrasion resistance. The analysis of the wipe profile geometry was realized using a Zeiss LSM 5 Exciter confocal microscope. Cold working of the supersaturated solid solution affects significantly its hardness but the cold plastic deformation causes deterioration of the wear resistance of the finally aged CuTi4 alloy

    Influence of Mg Addition on Crystallisation Kinetics and Structure of the Zn-Al-Cu Alloy

    No full text
    In this work the effect of Mg addition on structure as well as kinetics of crystallisation of Zn-Al-Cu cast alloy was presented. To the zinc alloy was added 0.1% mass of Mg. The alloy was cast into a metal mould. Thermo-derivative analysis was performed using the UMSA platform (Universal Metallurgical Simulator and Analyzer). The investigated alloys were freely cooled down with a rate of 0.1°C s-1. For the structure analysis were used results obtained using light microscopy, scanning and transmission electron microscopy
    corecore