270 research outputs found

    Global Extinction Risk for Seahorses, Pipefishes and Their Near Relatives (Syngnathiformes)

    Get PDF
    Few marine taxa have been comprehensively assessed for their conservation status, despite heavy pressures from fishing, habitat degradation and climate change. Here we report on the first global assessment of extinction risk for 300 species of syngnathiform fishes known as of 2017, using the IUCN Red List criteria. This order of bony teleosts is dominated by seahorses, pipefishes and seadragons (family Syngnathidae). It also includes trumpetfishes (Aulostomidae), shrimpfishes (Centriscidae), cornetfishes (Fistulariidae) and ghost pipefishes (Solenostomidae). At least 6% are threatened, but data suggest a mid-point estimate of 7.9% and an upper bound of 38%. Most of the threatened species are seahorses (Hippocampus spp.: 14/42 species, with an additional 17 that are Data Deficient) or freshwater pipefishes of the genus Microphis (2/18 species, with seven additional that are Data Deficient). Two species are Near Threatened. Nearly one-third of syngnathiformes (97 species) are Data Deficient and could potentially be threatened, requiring further field research and evaluation. Most species (61%) were, however, evaluated as Least Concern. Primary threats to syngnathids are (1) overexploitation, primarily by non-selective fisheries, for which most assessments were determined by criterion A (Hippocampus) and/or (2) habitat loss and degradation, for which assessments were determined by criterion B (Microphis and some Hippocampus). Threatened species occurred in most regions but more are found in East and South-east Asia and in South African estuaries. Vital conservation action for syngnathids, including constraining fisheries, particularly non-selective extraction, and habitat protection and rehabilitation, will benefit many other aquatic species

    Relativistic mean-field study of neutron-rich nuclei

    Get PDF
    A relativistic mean-field model is used to study the ground-state properties of neutron-rich nuclei. Nonlinear isoscalar-isovector terms, unconstrained by present day phenomenology, are added to the model Lagrangian in order to modify the poorly known density dependence of the symmetry energy. These new terms soften the symmetry energy and reshape the theoretical neutron drip line without compromising the agreement with existing ground-state information. A strong correlation between the neutron radius of 208Pb and the binding energy of valence orbitals is found: the smaller the neutron radius of 208Pb, the weaker the binding energy of the last occupied neutron orbital. Thus, models with the softest symmetry energy are the first ones to drip neutrons. Further, in anticipation of the upcoming one-percent measurement of the neutron radius of 208Pb at the Thomas Jefferson Laboratory, a close relationship between the neutron radius of 208Pb and neutron radii of elements of relevance to atomic parity-violating experiments is established.Comment: 14 pages, 5 figure

    Parity Violating Measurements of Neutron Densities

    Get PDF
    Parity violating electron nucleus scattering is a clean and powerful tool for measuring the spatial distributions of neutrons in nuclei with unprecedented accuracy. Parity violation arises from the interference of electromagnetic and weak neutral amplitudes, and the Z0Z^0 of the Standard Model couples primarily to neutrons at low Q2Q^2. The data can be interpreted with as much confidence as electromagnetic scattering. After briefly reviewing the present theoretical and experimental knowledge of neutron densities, we discuss possible parity violation measurements, their theoretical interpretation, and applications. The experiments are feasible at existing facilities. We show that theoretical corrections are either small or well understood, which makes the interpretation clean. The quantitative relationship to atomic parity nonconservation observables is examined, and we show that the electron scattering asymmetries can be directly applied to atomic PNC because the observables have approximately the same dependence on nuclear shape.Comment: 38 pages, 7 ps figures, very minor changes, submitted to Phys. Rev.

    Reevaluation of the role of nuclear uncertainties in experiments on atomic parity violation with isotopic chains

    Get PDF
    In light of new data on neutron distributions from experiments with antiprotonic atoms [ Trzcinska {\it et al.}, Phys. Rev. Lett. 87, 082501 (2001)], we reexamine the role of nuclear-structure uncertainties in the interpretation of measurements of parity violation in atoms using chains of isotopes of the same element. With these new nuclear data, we find an improvement in the sensitivity of isotopic chain measurements to ``new physics'' beyond the standard model. We compare possible constraints on ``new physics'' with the most accurate to date single-isotope probe of parity violation in the Cs atom. We conclude that presently isotopic chain experiments employing atoms with nuclear charges Z < 50 may result in more accurate tests of the weak interaction.Comment: 6 pages, 1 fig., submitted to Phys. Rev.

    Interstitials, Vacancies and Dislocations in Flux-Line Lattices: A Theory of Vortex Crystals, Supersolids and Liquids

    Full text link
    We study a three dimensional Abrikosov vortex lattice in the presence of an equilibrium concentration of vacancy, interstitial and dislocation loops. Vacancies and interstitials renormalize the long-wavelength bulk and tilt elastic moduli. Dislocation loops lead to the vanishing of the long-wavelength shear modulus. The coupling to vacancies and interstitials - which are always present in the liquid state - allows dislocations to relax stresses by climbing out of their glide plane. Surprisingly, this mechanism does not yield any further independent renormalization of the tilt and compressional moduli at long wavelengths. The long wavelength properties of the resulting state are formally identical to that of the ``flux-line hexatic'' that is a candidate ``normal'' hexatically ordered vortex liquid state.Comment: 21 RevTeX pgs, 7 eps figures uuencoded; corrected typos, published versio

    Nuclear Skins and Halos in the Mean-Field Theory

    Full text link
    Nuclei with large neutron-to-proton ratios have neutron skins, which manifest themselves in an excess of neutrons at distances greater than the radius of the proton distribution. In addition, some drip-line nuclei develop very extended halo structures. The neutron halo is a threshold effect; it appears when the valence neutrons occupy weakly bound orbits. In this study, nuclear skins and halos are analyzed within the self-consistent Skyrme-Hartree-Fock-Bogoliubov and relativistic Hartree-Bogoliubov theories for spherical shapes. It is demonstrated that skins, halos, and surface thickness can be analyzed in a model-independent way in terms of nucleonic density form factors. Such an analysis allows for defining a quantitative measure of the halo size. The systematic behavior of skins, halos, and surface thickness in even-even nuclei is discussed.Comment: 22 RevTeX pages, 22 EPS figures included, submitted to Physical Review

    Isospin breaking corrections to nucleon form factors in the constituent quark model

    Full text link
    We examine isospin breaking in the nucleon wave functions due to the udu - d quark mass difference and the Coulomb interaction among the quarks, and their consequences on the nucleon electroweak form factors in a nonrelativistic constituent quark model. The mechanically induced isospin breaking in the nucleon wave functions and electroweak form factors are exactly evaluated in this model. We calculate the electromagnetically induced isospin admixtures by using first-order perturbation theory, including the lowest-lying resonance with nucleon quantum numbers but isospin 3/2. We find a small (1%\leq 1\%), but finite correction to the anomalous magnetic moments of the nucleon stemming almost entirely from the quark mass difference, while the static nucleon axial coupling remains uncorrected. Corrections of the same order of magnitude appear in charge, magnetic, and axial radii of the nucleon. The correction to the charge radius in this model is primarily isoscalar, and may be of some significance for the extraction of the strangeness radius from e.g. elastic forward angle parity violating electron-proton asymmetries, or elastic 4He(e,e){}^4He({\vec e},e') experiments.Comment: 15 pp(22 as preprint), revtex, 3 uuencoded figs at end of this fil

    Biochemical Responses of Asparagus to Controlled Atmosphere Storage at 20 Degrees C

    Get PDF
    In seeking to understand the beneficial effects of controlled atmosphere (CA) storage at 20 degrees C on asparagus (Asparagus officinalis L.), biochemical responses of spear tips stored in air were compared with those of spears stored under CA (2% 02, 10% CO2). CA storage prevented the rapid loss of sucrose, increased acid invertase activity and asparagine accumulation observed in the tips of spears stored in air. CA storage also delayed changes in the levels of glutamine, malic, citric and fumaric acids, compared with those in tips of air-stored spears. Elongation observed in water-fed spears in air was reduced by CA. It is proposed that CA acted by depressing metabolism to such an extent that sucrose levels were maintained in the spear tip and this, in turn, prevented the cascade of metabolic events that contribute to spear deterioration in air

    Predictions of total and total reaction cross sections for nucleon-nucleus scattering up to 300 MeV

    Get PDF
    Total reaction cross sections are predicted for nucleons scattering from various nuclei. Projectile energies to 300 MeV are considered. So also are mass variations of those cross sections at selected energies. All predictions have been obtained from coordinate space optical potentials formed by full folding effective two-nucleon (NN) interactions with one body density matrix elements (OBDME) of the nuclear ground states. Good comparisons with data result when effective NN interactions defined by medium modification of free NN t matrices are used. Coupled with analyses of differential cross sections, these results are sensitive to details of the model ground states used to describe nuclei
    corecore