17 research outputs found
Oral Delivery of ACE2/Ang-(1–7) Bioencapsulated in Plant Cells Protects Against Experimental Uveitis and Autoimmune Uveoretinitis
Hyperactivity of the renin-angiotensin system (RAS) resulting in elevated Angiotensin II (Ang II) contributes to all stages of inflammatory responses including ocular inflammation. The discovery of angiotensin-converting enzyme 2 (ACE2) has established a protective axis of RAS involving ACE2/Ang-(1–7)/Mas that counteracts the proinflammatory and hypertrophic effects of the deleterious ACE/AngII/AT1R axis. Here we investigated the hypothesis that enhancing the systemic and local activity of the protective axis of the RAS by oral delivery of ACE2 and Ang-(1–7) bioencapsulated in plant cells would confer protection against ocular inflammation. Both ACE2 and Ang-(1–7), fused with the non-toxic cholera toxin subunit B (CTB) were expressed in plant chloroplasts. Increased levels of ACE2 and Ang-(1–7) were observed in circulation and retina after oral administration of CTB-ACE2 and Ang-(1–7) expressing plant cells. Oral feeding of mice with bioencapsulated ACE2/Ang-(1–7) significantly reduced endotoxin-induced uveitis (EIU) in mice. Treatment with bioencapsulated ACE2/Ang-(1–7) also dramatically decreased cellular infiltration, retinal vasculitis, damage and folding in experimental autoimmune uveoretinitis (EAU). Thus, enhancing the protective axis of RAS by oral delivery of ACE2/Ang-(1–7) bioencapsulated in plant cells provide an innovative, highly efficient and cost-effective therapeutic strategy for ocular inflammatory diseases
Oral Delivery of Bioencapsulated Proteins Across Blood–Brain and Blood–Retinal Barriers
Delivering neurotherapeutics to target brain-associated diseases is a major challenge. Therefore, we investigated oral delivery of green fluorescence protein (GFP) or myelin basic protein (MBP) fused with the transmucosal carrier cholera toxin B subunit (CTB), expressed in chloroplasts (bioencapsulated within plant cells) to the brain and retinae of triple transgenic Alzheimer\u27s disease (3×TgAD) mice, across the blood–brain barriers (BBB) and blood–retinal barriers (BRB). Human neuroblastoma cells internalized GFP when incubated with CTB-GFP but not with GFP alone. Oral delivery of CTB-MBP in healthy and 3×TgAD mice shows increased MBP levels in different regions of the brain, crossing intact BBB. Thioflavin S–stained amyloid plaque intensity was reduced up to 60% by CTB-MBP incubation with human AD and 3×TgAD mice brain sections ex vivo. Amyloid loads were reduced in vivo by 70% in hippocampus and cortex brain regions of 3×TgAD mice fed with bioencapsulated CTB-MBP, along with reduction in the ratio of insoluble amyloid β 42 (Aβ42) to soluble fractions. CTB-MBP oral delivery reduced Aβ42 accumulation in retinae and prevented loss of retinal ganglion cells in 3×TgAD mice. Lyophilization of leaves increased CTB-MBP concentration by 17-fold and stabilized it during long-term storage in capsules, facilitating low-cost oral delivery of therapeutic proteins across the BBB and BRB
Oral Delivery of Angiotensin-Converting Enzyme 2 and Angiotensin-(1-7) Bioencapsulated in Plant Cells Attenuates Pulmonary Hypertension
Emerging evidences indicate that diminished activity of the vasoprotective axis of the renin–angiotensin system, constituting angiotensin-converting enzyme 2 (ACE2) and its enzymatic product, angiotensin-(1-7) [Ang-(1-7)] contribute to the pathogenesis of pulmonary hypertension (PH). However, long-term repetitive delivery of ACE2 or Ang-(1-7) would require enhanced protein stability and ease of administration to improve patient compliance. Chloroplast expression of therapeutic proteins enables their bioencapsulation within plant cells to protect against gastric enzymatic degradation and facilitates long-term storage at room temperature. Besides, fusion to a transmucosal carrier helps effective systemic absorption from the intestine on oral delivery. We hypothesized that bioencapsulating ACE2 or Ang-(1-7) fused to the cholera nontoxin B subunit would enable development of an oral delivery system that is effective in treating PH. PH was induced in male Sprague Dawley rats by monocrotaline administration. Subset of animals was simultaneously treated with bioencapsulaed ACE2 or Ang-(1-7) (prevention protocol). In a separate set of experiments, drug treatment was initiated after 2 weeks of PH induction (reversal protocol). Oral feeding of rats with bioencapsulated ACE2 or Ang-(1-7) prevented the development of monocrotaline-induced PH and improved associated cardiopulmonary pathophysiology. Furthermore, in the reversal protocol, oral ACE2 or Ang-(1-7) treatment significantly arrested disease progression, along with improvement in right heart function, and decrease in pulmonary vessel wall thickness. In addition, a combination therapy with ACE2 and Ang-(1-7) augmented the beneficial effects against monocrotaline-induced lung injury. Our study provides proof-of-concept for a novel low-cost oral ACE2 or Ang-(1-7) delivery system using transplastomic technology for pulmonary disease therapeutics
Oral Delivery of Angiotensin-Converting Enzyme 2 and Angiotensin-(1-7) Bioencapsulated in Plant Cells Attenuates Pulmonary Hypertension
Emerging evidences indicate that diminished activity of the vasoprotective axis of the renin–angiotensin system, constituting angiotensin-converting enzyme 2 (ACE2) and its enzymatic product, angiotensin-(1-7) [Ang-(1-7)] contribute to the pathogenesis of pulmonary hypertension (PH). However, long-term repetitive delivery of ACE2 or Ang-(1-7) would require enhanced protein stability and ease of administration to improve patient compliance. Chloroplast expression of therapeutic proteins enables their bioencapsulation within plant cells to protect against gastric enzymatic degradation and facilitates long-term storage at room temperature. Besides, fusion to a transmucosal carrier helps effective systemic absorption from the intestine on oral delivery. We hypothesized that bioencapsulating ACE2 or Ang-(1-7) fused to the cholera nontoxin B subunit would enable development of an oral delivery system that is effective in treating PH. PH was induced in male Sprague Dawley rats by monocrotaline administration. Subset of animals was simultaneously treated with bioencapsulaed ACE2 or Ang-(1-7) (prevention protocol). In a separate set of experiments, drug treatment was initiated after 2 weeks of PH induction (reversal protocol). Oral feeding of rats with bioencapsulated ACE2 or Ang-(1-7) prevented the development of monocrotaline-induced PH and improved associated cardiopulmonary pathophysiology. Furthermore, in the reversal protocol, oral ACE2 or Ang-(1-7) treatment significantly arrested disease progression, along with improvement in right heart function, and decrease in pulmonary vessel wall thickness. In addition, a combination therapy with ACE2 and Ang-(1-7) augmented the beneficial effects against monocrotaline-induced lung injury. Our study provides proof-of-concept for a novel low-cost oral ACE2 or Ang-(1-7) delivery system using transplastomic technology for pulmonary disease therapeutics
Molecular pathogenesis of mycoplasma gallisepticum in chickens
© 2010 Dr. P. K. ShilMycoplasma gallisepticum (MG) is an important poultry pathogen that causes respiratory disease and loss of production worldwide, and is currently controlled by vaccination with live attenuated vaccines. These vaccines have limitations as they vary in their pathogenicity, the protection they afford, and their transmissibility, but each has been shown to effectively reduce losses associated with challenge in the field. A live attenuated vaccine, ts-11, has been used for the control of MG in several countries. This strain infects for extensive periods, but is confined to the upper respiratory tract, resulting in life-long immunity after a single administration, but not colonisation of the air sacs or disease. However it is highly dose dependent and the flock antibody response is weak. GapA is the primary cytadherence molecule in MG and absence of GapA expression has been observed in the vast majority of cells in the ts-11 vaccine strain. The immunogenicity of a GapA+ MG ts-11 vaccine was investigated by eye-drop administration to specific pathogen free chickens. Chickens were monitored for antibodies against MG using the rapid serum agglutination (RSA) test, for air sac lesions and for damage to the tracheal mucosa before and after challenge. Birds vaccinated with GapA+ MG ts-11 were protected against clinical signs of disease following challenge with virulent MG and GapA+ MG ts-11 was non-pathogenic and more immunogenic than the currently available MG ts-11 vaccine.
The capacities of GapA+ MG ts-11 to express an enzymatic marker and deliver a chicken cytokine were also examined. To achieve this, mycoplasma expression vectors were constructed; in which the Escherichia coli alkaline phosphatase (phoA) gene was fused to the chicken interleukin-6 (ChIL-6) gene with or without the cleavage signal sequence of MG vlhA1.9 and placed under the control of the MG ltuf promoter with a vlhA export signal sequence. The expression of PhoA was detected by colony and Western blotting using antibody specific for PhoA and the release of ChIL-6 in the media was detected by bioassay.
Using a similar approach the gene for a heterologous protective antigen, the S1 glycoprotein of infectious bronchitis virus (IBV), and the chicken interleukin-6 (ChIL-6) gene were used to construct recombinant GapA+ MG ts-11 strains to evaluate the potential of ts-11 as a vaccine vector and thus to induce a protective immune response against other diseases of poultry.
The capacity of GapA+ MG ts-11 expressing the S1 glycoprotein of IBV and ChIL-6 to induce protective immunity in the respiratory tract of chickens was assessed by eye- drop administration in SPF chickens, followed by challenge with the virulent IBV strain N2-75. Chickens were monitored for antibodies against MG using the RSA test and for antibodies against the S1 protein by Western blotting. After IBV challenge, birds vaccinated with recombinant GapA+ MG ts-11 vaccines were compared to birds vaccinated with parental strain of MG. Chickens vaccinated with GapA+ MG ts-11 expressing the S1 and releasing ChIL-6 had a detectable immune response against MG and were protected against damage by pathogenic IBV without any effect on weight gain.Thus the work reported in this thesis has identified a GapA+ MG ts-11 strain with potential as a vaccine candidate and an optimal enzymatic marker for foreign gene expression in MG and has shown that this can be used to develop recombinant respiratory tract vaccines for poultry
Genomic Diversity of a Globally Used, Live Attenuated Mycoplasma Vaccine
The Mycoplasma synoviae live attenuated vaccine strain MS-H (Vaxsafe MS; Bioproperties Pty., Ltd., Australia) is commonly used around the world to prevent chronic infections caused by M. synoviae in birds and to minimize economic losses in the poultry industry. MS-H is a temperature-sensitive strain that is generated via the chemical mutagenesis of a virulent M. synoviae isolate, 86079/7NS. 32 single nucleotide polymorphisms have been found in the genome of MS-H compared to that of 86079/7NS, including 25 in predicted coding sequences (CDSs). There is limited information on the stability of these mutations in MS-H in vitro during the propagation of the vaccine manufacturing process or in vivo after the vaccination of chickens. Here, we performed a comparative analysis of MS-H genomes after in vitro and in vivo passages under different circumstances. Studying the dynamics of the MS-H population can provide insights into the factors that potentially affect the health of vaccinated birds. The genomes of 11 in vitro laboratory passages and 138 MS-H bird reisolates contained a total of 254 sequence variations. Of these, 39 variations associated with CDSs were detected in more than one genome (range = 2 to 62, median = 2.5), suggesting that these sequences are particularly prone to mutations. From the 25 CDSs containing previously characterized variations between MS-H and 86079/7NS, 7 were identified in the MS-H reisolates and progenies examined here. In conclusion, the MS-H genome contains individual regions that are prone to mutations that enable the restoration of the genotype or the phenotype of wild-type 86079/7NS in those regions. However, accumulated mutations in these regions are rare
Table_3_Virulence factors of Mycoplasma synoviae: Three genes influencing colonization, immunogenicity, and transmissibility.DOCX
Infections caused by Mycoplasma synoviae are major welfare and economic concerns in poultry industries worldwide. These infections cause chronic respiratory disease and/or synovitis in chickens and turkeys leading to reduced production and increased mortality rates. The live attenuated vaccine strain MS-H (Vaxsafe® MS), commonly used for protection against M. synoviae infection in many countries, contains 32 single nucleotide variations compared to its wildtype parent strain, 86079/7NS. Genomic analysis of vaccine strains reisolated from flocks following the administration of MS-H has identified reversions to the original 86079/7NS sequence in the obgE, oppF and gapdh genes. Here, three MS-H field reisolates containing the 86079/7NS genotype in obgE (AS2), obgE and oppF (AB1), and obgE, oppF and gapdh (TS4), as well as the vaccine MS-H and the parental strain 86079/7NS were experimentally inoculated to chickens. The strains were assessed for their ability to infect and elicit immune responses in the recipient chickens, as well as in naïve in-contact chickens. Despite the loss of temperature sensitivity phenotype and colonization of the reisolates in the lower respiratory tract, there was no significant differences detected in the microscopic mucosal thickness of the middle or lower trachea of the inoculated chickens. Concurrent reversions in ObgE, OppF and GAPDH proteins were associated with higher gross air sac lesion scores and increased microscopic upper-tracheal mucosal thickness in chickens directly inoculated with the reisolates following intratracheal administration of a virulent strain of infectious bronchitis virus. The gross air sac lesions of the chickens in-contact with those inoculated with reisolates were not significantly different to those of chickens in-contact with MS-H inoculated chickens, suggesting that horizontal transmission of the reisolates in the poultry flock will not lead to higher pathogenicity or clinical signs. These results suggest a significant role of GAPDH and/or cumulative effect of ObgE, OppF and GAPDH on M. synoviae pathogenicity. Future experiments will be required to investigate the effect of single mutations in gapdh or oppF gene on pathogenicity of M. synoviae.</p
Data_Sheet_1_Virulence factors of Mycoplasma synoviae: Three genes influencing colonization, immunogenicity, and transmissibility.PDF
Infections caused by Mycoplasma synoviae are major welfare and economic concerns in poultry industries worldwide. These infections cause chronic respiratory disease and/or synovitis in chickens and turkeys leading to reduced production and increased mortality rates. The live attenuated vaccine strain MS-H (Vaxsafe® MS), commonly used for protection against M. synoviae infection in many countries, contains 32 single nucleotide variations compared to its wildtype parent strain, 86079/7NS. Genomic analysis of vaccine strains reisolated from flocks following the administration of MS-H has identified reversions to the original 86079/7NS sequence in the obgE, oppF and gapdh genes. Here, three MS-H field reisolates containing the 86079/7NS genotype in obgE (AS2), obgE and oppF (AB1), and obgE, oppF and gapdh (TS4), as well as the vaccine MS-H and the parental strain 86079/7NS were experimentally inoculated to chickens. The strains were assessed for their ability to infect and elicit immune responses in the recipient chickens, as well as in naïve in-contact chickens. Despite the loss of temperature sensitivity phenotype and colonization of the reisolates in the lower respiratory tract, there was no significant differences detected in the microscopic mucosal thickness of the middle or lower trachea of the inoculated chickens. Concurrent reversions in ObgE, OppF and GAPDH proteins were associated with higher gross air sac lesion scores and increased microscopic upper-tracheal mucosal thickness in chickens directly inoculated with the reisolates following intratracheal administration of a virulent strain of infectious bronchitis virus. The gross air sac lesions of the chickens in-contact with those inoculated with reisolates were not significantly different to those of chickens in-contact with MS-H inoculated chickens, suggesting that horizontal transmission of the reisolates in the poultry flock will not lead to higher pathogenicity or clinical signs. These results suggest a significant role of GAPDH and/or cumulative effect of ObgE, OppF and GAPDH on M. synoviae pathogenicity. Future experiments will be required to investigate the effect of single mutations in gapdh or oppF gene on pathogenicity of M. synoviae.</p