318 research outputs found
Sleep medicine catalogue of knowledge and skills – Revision
The 'catalogue of knowledge and skills' for sleep medicine presents the blueprint for a curriculum, a textbook, and an examination on sleep medicine. The first catalogue of knowledge and skills was presented by the European Sleep Research Society in 2014. It was developed following a formal Delphi procedure. A revised version was needed in order to incorporate changes that have occurred in the meantime in the International Classification of Sleep Disorders, updates in the manual for scoring sleep and associated events, and, most important, new knowledge in sleep physiology and pathophysiology. In addition, another major change can be observed in sleep medicine: a paradigm shift in sleep medicine has taken place. Sleep medicine is no longer a small interdisciplinary field in medicine. Sleep medicine has increased in terms of recognition and importance in medical care. Consequently, major medical fields (e.g. pneumology, cardiology, neurology, psychiatry, otorhinolaryngology, paediatrics) recognise that sleep disorders become a necessity for education and for diagnostic assessment in their discipline. This paradigm change is considered in the catalogue of knowledge and skills revision by the addition of new chapters
Моделирование литья алюминия в кокиль
На основе моделирования процесса заливки алюминиевого сплава в металлическую форму разработан технологический процесс минимизирующий количество дефектов в теле отливки
Altered monocyte activation markers in Tourette's syndrome: a case-control study
Background: Infections and immunological processes are likely to be involved in the pathogenesis of Tourette's syndrome (TS). To determine possible common underlying immunological mechanisms, we focused on innate immunity and studied markers of inflammation, monocytes, and monocyte-derived cytokines. Methods: In a cross-sectional study, we used current methods to determine the number of monocytes and levels of C-reactive protein (CRP) in 46 children, adolescents, and adult patients suffering from TS and in 43 healthy controls matched for age and sex. Tumor necrosis factor alpha (TNF-alpha), interleukin 6 (IL-6), soluble CD14 (sCD14), IL1-receptor antagonist (IL1-ra), and serum neopterin were detected by immunoassays. Results: We found that CRP and neopterin levels and the number of monocytes were significantly higher in TS patients than in healthy controls. Serum concentrations of TNF-alpha, sIL1-ra, and sCD14 were significantly lower in TS patients. All measured values were within normal ranges and often close to detection limits. Conclusions: The present results point to a monocyte dysregulation in TS. This possible dysbalance in innate immunity could predispose to infections or autoimmune reactions
An Agent-Based Model of a Hepatic Inflammatory Response to Salmonella: A Computational Study under a Large Set of Experimental Data
Citation: Shi, Z. Z., Chapes, S. K., Ben-Arieh, D., & Wu, C. H. (2016). An Agent-Based Model of a Hepatic Inflammatory Response to Salmonella: A Computational Study under a Large Set of Experimental Data. Plos One, 11(8), 39. doi:10.1371/journal.pone.0161131We present an agent-based model (ABM) to simulate a hepatic inflammatory response (HIR) in a mouse infected by Salmonella that sometimes progressed to problematic proportions, known as "sepsis". Based on over 200 published studies, this ABM describes interactions among 21 cells or cytokines and incorporates 226 experimental data sets and/or data estimates from those reports to simulate a mouse HIR in silico. Our simulated results reproduced dynamic patterns of HIR reported in the literature. As shown in vivo, our model also demonstrated that sepsis was highly related to the initial Salmonella dose and the presence of components of the adaptive immune system. We determined that high mobility group box-1, C-reactive protein, and the interleukin-10: tumor necrosis factor-a ratio, and CD4+ T cell: CD8+ T cell ratio, all recognized as biomarkers during HIR, significantly correlated with outcomes of HIR. During therapy-directed silico simulations, our results demonstrated that anti-agent intervention impacted the survival rates of septic individuals in a time-dependent manner. By specifying the infected species, source of infection, and site of infection, this ABM enabled us to reproduce the kinetics of several essential indicators during a HIR, observe distinct dynamic patterns that are manifested during HIR, and allowed us to test proposed therapy-directed treatments. Although limitation still exists, this ABM is a step forward because it links underlying biological processes to computational simulation and was validated through a series of comparisons between the simulated results and experimental studies
- …