2 research outputs found

    Testing the Robustness of Solution Force Fields for MD Simulations on Gaseous Protein Ions.

    Get PDF
    It is believed that electrosprayed proteins and protein complexes can retain solution-like conformations in the gas phase. However, the lack of high-resolution structure determination methods for gaseous protein ions implies that their properties remain poorly understood. Many practitioners tackle this difficulty by complementing mass spectrometry-based experiments with molecular dynamics (MD) simulations. It is a potential problem that the standard MD force fields used for this purpose (such as OPLS-AA/L and CHARMM) were optimized for solution conditions. The question whether these force fields produce meaningful gas-phase data has received surprisingly little attention. Standard force fields are overpolarized to account for an aqueous environment, i.e., atomic charges and intramolecular dipole moments are ∼20% larger than predicted by gas-phase ab initio methods. Here, we examined the implications of this overpolarization by conducting a series of MD simulations on electrosprayed proteins. Force fields were modified via a charge scaling factor (CSF), while ensuring that the net protein charge remained unchanged. CSF = 0.8 should roughly eliminate water-associated overpolarization. Gas-phase CHARMM simulations on myoglobin with CSF = 0.8 and with unmodified parameters (CSF = 1) yielded similar results, preserving a compact structure that was consistent with ion mobility experiments. Major structural changes caused by weakened charge-dipole and dipole-dipole contacts occurred only when lowering CSF to physically unreasonable values (0.5 and 0.1). Similar results were obtained in mobile-proton OPLS-AA/L simulations on the collision-induced dissociation of transthyretin. Our data support the view that gas-phase MD simulations with standard (solution) force fields are suitable for modeling gaseous protein ions in a semiquantitative manner. Although this is welcome news for the mass spectrometry community, it is hoped that dedicated gas-phase MD force fields will become available in the near future
    corecore