105 research outputs found

    Rules of engagement promote polarity in RNA trafficking

    Get PDF
    Many cell biological pathways exhibit overall polarity (net movement of molecules in one direction) even though individual molecular interactions in the pathway are freely reversible. The A2 RNA trafficking pathway exhibits polarity in moving specific RNA molecules from the nucleus to localization sites in the myelin compartment of oligodendrocytes or dendritic spines in neurons. The A2 pathway is mediated by a ubiquitously expressed trans-acting trafficking factor (hnRNP A2) that interacts with a specific 11 nucleotide cis-acting trafficking sequence termed the A2 response element (A2RE) found in several localized RNAs. Five different molecular partners for hnRNP A2 have been identified in the A2 pathway: hnRNP A2 itself, transportin, A2RE RNA, TOG (tumor overexpressed gene) and hnRNP E1, each playing a key role in one particular step of the A2 pathway. Sequential interactions of hnRNP A2 with different molecular partners at each step mediate directed movement of trafficking intermediates along the pathway. Specific "rules of engagement" (both and, either or, only if) govern sequential interactions of hnRNP A2 with each of its molecular partners. Rules of engagement are defined experimentally using three component binding assays to measure differential binding of hnRNP A2 to one partner in the presence of each of the other partners in the pathway. Here we describe rules of engagement for hnRNP A2 binding to each of its molecular partners and discuss how these rules of engagement promote polarity in the A2 RNA trafficking pathway. For molecules with multiple binding partners, specific rules of engagement govern different molecular interactions. Rules of engagement are ultimately determined by structural relationships between binding sites on individual molecules. In the A2 RNA trafficking pathway rules of engagement governing interactions of hnRNP A2 with different binding partners provide the basis for polarity of movement of intermediates along the pathway

    Nucleocytoplasmic transport: a thermodynamic mechanism

    Full text link
    The nuclear pore supports molecular communication between cytoplasm and nucleus in eukaryotic cells. Selective transport of proteins is mediated by soluble receptors, whose regulation by the small GTPase Ran leads to cargo accumulation in, or depletion from the nucleus, i.e., nuclear import or nuclear export. We consider the operation of this transport system by a combined analytical and experimental approach. Provocative predictions of a simple model were tested using cell-free nuclei reconstituted in Xenopus egg extract, a system well suited to quantitative studies. We found that accumulation capacity is limited, so that introduction of one import cargo leads to egress of another. Clearly, the pore per se does not determine transport directionality. Moreover, different cargo reach a similar ratio of nuclear to cytoplasmic concentration in steady-state. The model shows that this ratio should in fact be independent of the receptor-cargo affinity, though kinetics may be strongly influenced. Numerical conservation of the system components highlights a conflict between the observations and the popular concept of transport cycles. We suggest that chemical partitioning provides a framework to understand the capacity to generate concentration gradients by equilibration of the receptor-cargo intermediary.Comment: in press at HFSP Journal, vol 3 16 text pages, 1 table, 4 figures, plus Supplementary Material include

    Structural Model of the Rev Regulatory Protein from Equine Infectious Anemia Virus

    Get PDF
    Rev is an essential regulatory protein in the equine infectious anemia virus (EIAV) and other lentiviruses, including HIV-1. It binds incompletely spliced viral mRNAs and shuttles them from the nucleus to the cytoplasm, a critical prerequisite for the production of viral structural proteins and genomic RNA. Despite its important role in production of infectious virus, the development of antiviral therapies directed against Rev has been hampered by the lack of an experimentally-determined structure of the full length protein. We have used a combined computational and biochemical approach to generate and evaluate a structural model of the Rev protein. The modeled EIAV Rev (ERev) structure includes a total of 6 helices, four of which form an anti-parallel four-helix bundle. The first helix contains the leucine-rich nuclear export signal (NES). An arginine-rich RNA binding motif, RRDRW, is located in a solvent-exposed loop region. An ERLE motif required for Rev activity is predicted to be buried in the core of modeled structure where it plays an essential role in stabilization of the Rev fold. This structural model is supported by existing genetic and functional data as well as by targeted mutagenesis of residues predicted to be essential for overall structural integrity. Our predicted structure should increase understanding of structure-function relationships in Rev and may provide a basis for the design of new therapies for lentiviral diseases

    Efficient Nuclear Transport of Structurally Disturbed Cargo: Mutations in a Cargo Protein Switch Its Cognate Karyopherin

    Get PDF
    The Karyopherin (Kap) family of nuclear transport receptors enables trafficking of proteins to and from the nucleus in a precise, regulated manner. Individual members function in overlapping pathways, while simultaneously being very specific for their main cargoes. The details of this apparent contradiction and rules governing pathway preference remain to be further elucidated. S. cerevisiae Lhp1 is an abundant protein that functions as an RNA chaperone in a variety of biologically important processes. It localizes almost exclusively to the nucleus and is imported by Kap108. We show that mutation of 3 of the 275 residues in Lhp1 alters its import pathway to a Kap121-dependent process. This mutant does not retain wild-type function and is bound by several chaperones. We propose that Kap121 also acts as a chaperone, one that can act as a genetic buffer by transporting mutated proteins to the nucleus

    Parallel Germline Infiltration of a Lentivirus in Two Malagasy Lemurs

    Get PDF
    Retroviruses normally infect the somatic cells of their host and are transmitted horizontally, i.e., in an exogenous way. Occasionally, however, some retroviruses can also infect and integrate into the genome of germ cells, which may allow for their vertical inheritance and fixation in a given species; a process known as endogenization. Lentiviruses, a group of mammalian retroviruses that includes HIV, are known to infect primates, ruminants, horses, and cats. Unlike many other retroviruses, these viruses have not been demonstrably successful at germline infiltration. Here, we report on the discovery of endogenous lentiviral insertions in seven species of Malagasy lemurs from two different genera—Cheirogaleus and Microcebus. Combining molecular clock analyses and cross-species screening of orthologous insertions, we show that the presence of this endogenous lentivirus in six species of Microcebus is the result of one endogenization event that occurred about 4.2 million years ago. In addition, we demonstrate that this lentivirus independently infiltrated the germline of Cheirogaleus and that the two endogenization events occurred quasi-simultaneously. Using multiple proviral copies, we derive and characterize an apparently full length and intact consensus for this lentivirus. These results provide evidence that lentiviruses have repeatedly infiltrated the germline of prosimian species and that primates have been exposed to lentiviruses for a much longer time than what can be inferred based on sequence comparison of circulating lentiviruses. The study sets the stage for an unprecedented opportunity to reconstruct an ancestral primate lentivirus and thereby advance our knowledge of host–virus interactions

    Peptides derived from the HIV-1 integrase promote HIV-1 infection and multi-integration of viral cDNA in LEDGF/p75-knockdown cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The presence of the cellular Lens Epithelium Derived Growth Factor p75 (LEDGF/p75) protein is essential for integration of the Human immunodeficiency virus type 1 (HIV-1) cDNA and for efficient virus production. In the absence of LEDGF/p75 very little integration and virus production can be detected, as was demonstrated using LEDGF/p75-knokdown cells.</p> <p>Results</p> <p>Here we show that the failure to infect LEDGF/p75-knockdown cells has another reason aside from the lack of LEDGF/p75. It is also due to inhibition of the viral integrase (IN) enzymatic activity by an early expressed viral Rev protein. The formation of an inhibitory Rev-IN complex in virus-infected cells can be disrupted by the addition of three IN-derived, cell-permeable peptides, designated INr (IN derived-Rev interacting peptides) and INS (IN derived-integrase stimulatory peptide). The results of the present work confirm previous results showing that HIV-1 fails to infect LEDGF/p75-knockdown cells. However, in the presence of INrs and INS peptides, relatively high levels of viral cDNA integration as well as productive virus infection were obtained following infection by a wild type (WT) HIV-1 of LEDGF/p75-knockdown cells.</p> <p>Conclusions</p> <p>It appears that the lack of integration observed in HIV-1 infected LEDGF/p75-knockdown cells is due mainly to the inhibitory effect of Rev following the formation of a Rev-IN complex. Disruption of this inhibitory complex leads to productive infection in those cells.</p

    Oxygen Consumption Can Regulate the Growth of Tumors, a New Perspective on the Warburg Effect

    Get PDF
    The unique metabolism of tumors was described many years ago by Otto Warburg, who identified tumor cells with increased glycolysis and decreased mitochondrial activity. However, "aerobic glycolysis" generates fewer ATP per glucose molecule than mitochondrial oxidative phosphorylation, so in terms of energy production, it is unclear how increasing a less efficient process provides tumors with a growth advantage.We carried out a screen for loss of genetic elements in pancreatic tumor cells that accelerated their growth as tumors, and identified mitochondrial ribosomal protein L28 (MRPL28). Knockdown of MRPL28 in these cells decreased mitochondrial activity, and increased glycolysis, but paradoxically, decreased cellular growth in vitro. Following Warburg's observations, this mutation causes decreased mitochondrial function, compensatory increase in glycolysis and accelerated growth in vivo. Likewise, knockdown of either mitochondrial ribosomal protein L12 (MRPL12) or cytochrome oxidase had a similar effect. Conversely, expression of the mitochondrial uncoupling protein 1 (UCP1) increased oxygen consumption and decreased tumor growth. Finally, treatment of tumor bearing animals with dichloroacetate (DCA) increased pyruvate consumption in the mitochondria, increased total oxygen consumption, increased tumor hypoxia and slowed tumor growth.We interpret these findings to show that non-oncogenic genetic changes that alter mitochondrial metabolism can regulate tumor growth through modulation of the consumption of oxygen, which appears to be a rate limiting substrate for tumor proliferation

    Erratum to : Analysis of the mitochondrial maxicircle of Trypanosoma lewisi, a neglected human pathogen

    Get PDF
    BACKGROUND The haemoflagellate Trypanosoma lewisi is a kinetoplastid parasite which, as it has been recently reported to cause human disease, deserves increased attention. Characteristic features of all kinetoplastid flagellates are a uniquely structured mitochondrial DNA or kinetoplast, comprised of a network of catenated DNA circles, and RNA editing of mitochondrial transcripts. The aim of this study was to describe the kinetoplast DNA of T. lewisi. METHODS/RESULTS In this study, purified kinetoplast DNA from T. lewisi was sequenced using high-throughput sequencing in combination with sequencing of PCR amplicons. This allowed the assembly of the T. lewisi kinetoplast maxicircle DNA, which is a homologue of the mitochondrial genome in other eukaryotes. The assembly of 23,745 bp comprises the non-coding and coding regions. Comparative analysis of the maxicircle sequence of T. lewisi with Trypanosoma cruzi, Trypanosoma rangeli, Trypanosoma brucei and Leishmania tarentolae revealed that it shares 78 %, 77 %, 74 % and 66 % sequence identity with these parasites, respectively. The high GC content in at least 9 maxicircle genes of T. lewisi (ATPase6; NADH dehydrogenase subunits ND3, ND7, ND8 and ND9; G-rich regions GR3 and GR4; cytochrome oxidase subunit COIII and ribosomal protein RPS12) implies that their products may be extensively edited. A detailed analysis of the non-coding region revealed that it contains numerous repeat motifs and palindromes. CONCLUSIONS We have sequenced and comprehensively annotated the kinetoplast maxicircle of T. lewisi. Our analysis reveals that T. lewisi is closely related to T. cruzi and T. brucei, and may share similar RNA editing patterns with them rather than with L. tarentolae. These findings provide novel insight into the biological features of this emerging human pathogen

    HIV-1 Matrix Dependent Membrane Targeting Is Regulated by Gag mRNA Trafficking

    Get PDF
    Retroviral Gag polyproteins are necessary and sufficient for virus budding. Productive HIV-1 Gag assembly takes place at the plasma membrane. However, little is known about the mechanisms by which thousands of Gag molecules are targeted to the plasma membrane. Using a bimolecular fluorescence complementation (BiFC) assay, we recently reported that the cellular sites and efficiency of HIV-1 Gag assembly depend on the precise pathway of Gag mRNA export from the nucleus, known to be mediated by Rev. Here we describe an assembly deficiency in human cells for HIV Gag whose expression depends on hepatitis B virus (HBV) post-transcriptional regulatory element (PRE) mediated-mRNA nuclear export. PRE-dependent HIV Gag expressed well in human cells, but assembled with slower kinetics, accumulated intracellularly, and failed to associate with a lipid raft compartment where the wild-type Rev-dependent HIV-1 Gag efficiently assembles. Surprisingly, assembly and budding of PRE-dependent HIV Gag in human cells could be rescued in trans by co-expression of Rev-dependent Gag that provides correct membrane targeting signals, or in cis by replacing HIV matrix (MA) with other membrane targeting domains. Taken together, our results demonstrate deficient membrane targeting of PRE-dependent HIV-1 Gag and suggest that HIV MA function is regulated by the trafficking pathway of the encoding mRNA
    corecore