1,223 research outputs found

    Condensate fluctuations of a trapped, ideal Bose gas

    Get PDF
    For a non-self-interacting Bose gas with a fixed, large number of particles confined to a trap, as the ground state occupation becomes macroscopic, the condensate number fluctuations remain micrscopic. However, this is the only significant aspect in which the grand canonical description differs from canonical or microcanonical in the thermodynamic limit. General arguments and estimates including some vanishingly small quantities are compared to explicit, fixed-number calculations for 10^2 to 10^6 particles.Comment: 16 pages (REVTeX) plus 4 figures (ps), revision includes brief comparison of repulsive-interaction vs. fixed-N fluctuation damping. To be published in Phys. Rev.

    Pulsar Signal of Deconfinement

    Full text link
    A solitary millisecond pulsar, if near the mass limit, and undergoing a phase transition, either first or second order, provided the transition is to a substantially more compressible phase, will emit a blatantly obvious signal---spontaneous spin-up. Normally a pulsar spins down by angular momentum loss to radiation. The signal is trivial to detect and is estimated to be ``on'' for 1/50 of the spin-down era of millisecond pulsars. Presently about 25 solitary millisecond pulsars are known. The phenomenon is analogous to ``backbending'' observed in high spin nuclei in the 1970's.Comment: 12 pages, 11 figures, Latex-espcrc1.sty (Dec. 1997, Plenary Talk to appear in Nuclear Physics A in the Proceedings of Quark Matter97, Tsukuba, Japan

    Color Confinement and Massive Gluons

    Full text link
    Color confinement is one of the central issues in QCD so that there are various interpretations of this feature. In this paper we have adopted the interpretation that colored particles are not subject to observation just because colored states are unphysical in the sense of Eq. (2.16). It is shown that there are two phases in QCD distinguished by different choices of the gauge parameter. In one phase, called the "confinement phase", color confinement is realized and gluons turn out to be massive. In the other phase, called the "deconfinement phase", color confinement is not realized, but the gluons remain massless.Comment: 14 page

    Path Integrals, Density Matrices, and Information Flow with Closed Timelike Curves

    Get PDF
    Two formulations of quantum mechanics, inequivalent in the presence of closed timelike curves, are studied in the context of a soluable system. It illustrates how quantum field nonlinearities lead to a breakdown of unitarity, causality, and superposition using a path integral. Deutsch's density matrix approach is causal but typically destroys coherence. For each of these formulations I demonstrate that there are yet further alternatives in prescribing the handling of information flow (inequivalent to previous analyses) that have implications for any system in which unitarity or coherence are not preserved.Comment: 25 pages, phyzzx, CALT-68-188

    Spectral Functions for Heavy-Light Currents and Form Factor Relations in Hqet

    Full text link
    We derive relations among form factors describing the current-induced transitions: (vacuum) B,B,Bπ,Bπ,Bρ\rightarrow B,B^{*}, B \pi, B^{*} \pi, B \rho and BρB^{*} \rho using heavy quark symmetry. The results are compared to corresponding form factor relations following from identities between scalar and axial vector, and pseudoscalar and vector spectral functions in the heavy quark limit.Comment: LaTeX, 7 pages, UCT-TP 188/92, MZ-TH/92-5

    Kaon mass in dense matter

    Get PDF
    The variation of kaon mass in dense, charge-neutral baryonic matter at beta-equilibrium has been investigated. The baryon interaction has been included by means of nonlinear Walecka model, with and without hyperons and the interaction of kaons with the baryons has been incorporated through the Nelson-Kaplan model. A self-consistant, one-loop level calculation has been carried out. We find that at the mean field level, the presence of the hyperons makes the density-dependence of the kaon mass softer. Thus, the kaon condensation threshold is pushed up in the baryon density. The loop diagrams tend to lower the kaon condensation point for lower values of a3msa_3 m_s. We also find that the S-wave kaon-nucleon interaction plays the dominant role in determining the on-set of kaon condensation and the contribution of the P-wave interaction is insignificant.Comment: Four figures available on reques

    Can a strongly interacting Higgs boson rescue SU(5)?

    Full text link
    Renormalization group analyses show that the three running gauge coupling constants of the Standard Model do not become equal at any energy scale. These analyses have not included any effects of the Higgs boson's self-interaction. In this paper, I examine whether these effects can modify this conclusion.Comment: 8 pages (plus 4 postscript figures

    Isospin Multiplet Structure in Ultra--Heavy Fermion Bound States

    Full text link
    The coupled Bethe--Salpeter bound state equations for a QQˉQ\bar Q system, where Q=(U,D)Q=(U,D) is a degenerate, fourth generation, super--heavy quark doublet, are solved in several ladder approximation models. The exchanges of gluon, Higgs and Goldstone modes in the standard model are calculated in the ultra--heavy quark limit where weak γ,W±\gamma, W^\pm and Z0Z^0 contributions are negligible. A natural I=0I=0 and I=1I=1 multiplet pattern is found, with large splittings occuring between the different weak iso--spin states when MQM_Q, the quark masses, are larger than values in the range 0.4TeV<MQ<0.8TeV0.4 TeV<M_Q<0.8 TeV, depending on which model is used. Consideration of ultra--heavy quark lifetime constraints and UDU-D mass splitting constraints are reviewed to establish the plausibility of lifetime and mass degeneracy requirements assumed for this paper.Comment: 20 pages, 7 figures (hard copy available upon request), report# KU-HEP-93-2

    Mesoscopic Fermi gas in a harmonic trap

    Full text link
    We study the thermodynamical properties of a mesoscopic Fermi gas in view of recent possibilities to trap ultracold atoms in a harmonic potential. We focus on the effects of shell closure for finite small atom numbers. The dependence of the chemical potential, the specific heat and the density distribution on particle number and temperature is obtained. Isotropic and anisotropic traps are compared. Possibilities of experimental observations are discussed.Comment: 8 pages, 9 eps-figures included, Revtex, submitted to Phys. Rev. A, minor changes to figures and captions, corrected typo

    Classical Dimensional Transmutation and Confinement

    Get PDF
    We observe that probing certain classical field theories by external sources uncovers the underlying renormalization group structure, including the phenomenon of dimensional transmutation, at purely-classical level. We perform this study on an example of λϕ4\lambda\phi^{4} theory and unravel asymptotic freedom and triviality for negative and positives signs of λ\lambda respectively. We derive exact classical β\beta function equation. Solving this equation we find that an isolated source has an infinite energy and therefore cannot exist as an asymptotic state. On the other hand a dipole, built out of two opposite charges, has finite positive energy. At large separation the interaction potential between these two charges grows indefinitely as a distance in power one third
    corecore