20 research outputs found
How to tie dangerous surgical knots: easily. Can we avoid this?
ObjectiveSecure knots are essential in all areas of surgical, medical and veterinary practice. Our hypothesis was that technique of formation of each layer of a surgical knot was important to its security.DesignEqual numbers of knots were tied, by each of three groups, using three techniques, for each of four suture materials; a standard flat reef knot (FRK), knots tied under tension (TK) and knots laid without appropriate hand crossing (NHCK). Each knot technique was performed reproducibly, and tested by distraction with increasing force, till each material broke or the knot separated completely.SettingTemporary knot tying laboratory.MaterialsThe suture materials were, 2/0 polyglactin 910 (Vicryl), 3/0 polydioxanone, 4/0 poliglecaprone 25 (Monocryl) and 1 nylon (Ethilon).ParticipantsThree groups comprised, a senior surgeon, a resident surgeon and three medical students.Outcome measuresProportion of each knot type that slipped, degree of slippage and length of suture held in loop secured by each knot type.Results20% of FRK tied with all suture materials slipped; all knots tied with the other two techniques, with all materials, slipped, TK (100%) and NHCK (100%). The quantitative degree of slip was significantly less for FRK (mean 6.3%–, 95% CI 2.2% to 10.4%) than for TK (mean 312%, 95% CI 280.0% to 344.0%) and NHCK (mean 113.0%, –95% CI 94.3% to 131.0%).The mean length of suture in loops held within (FRK mean 25.1 mm 95% CI 24.2 to 26.0 mm) was significantly greater than mean lengths held by the other techniques (TK mean 17.0 mm, 95% CI 16.3 to 17.7 mm), (NHCK mean 16.3 mm, 95% CI 15.9 to 16.7 mm). The latter two types of knot may have tightened more than anticipated, in comparison to FRK, with potential undue tissue tension.ConclusionMeticulous technique of knot tying is essential for secure knots, appropriate tissue tension and the security of anastomoses and haemostasis effected.</jats:sec
International study on inter-reader variability for circulating tumor cells in breast cancer
Introduction: Circulating tumor cells (CTCs) have been studied in breast cancer with the CellSearch® system. Given the low CTC counts in non-metastatic breast cancer, it is important to evaluate the inter-reader agreement.Methods: CellSearch® images (N = 272) of either CTCs or white blood cells or artifacts from 109 non-metastatic (M0) and 22 metastatic (M1) breast cancer patients from reported studies were sent to 22 readers from 15 academic laboratories and 8 readers from two Veridex laboratories. Each image was scored as No CTC vs CTC HER2- vs CTC HER2+. The 8 Veridex readers were summarized to a Veridex Consensus (VC) to compare each academic reader using % agreement and kappa (κ) statistics. Agreement was compared according to disease stage and CTC counts using the Wilcoxon signed rank test.Results: For CTC definition (No CTC vs CTC), the median agreement between academic readers and VC was 92% (range 69 to 97%) with a median κ of 0.83 (range 0.37 to 0.93). Lower agreement was observed in images from M0 (median 91%, range 70 to 96%) compared to M1 (median 98%, range 64 to 100%) patients (P < 0.001) and from M0 and <3CTCs (median 87%, range 66 to 95%) compared to M0 and ≥3CTCs samples (median 95%, range 77 to 99%), (P < 0.001). For CTC HER2 expression (HER2- vs HER2+), the median agreement was 87% (range 51 to 95%) with a median κ of 0.74 (range 0.25 to 0.90).Conclusions: The inter-reader agreement for CTC definition was high. Reduced agreement was observed in M0 patients with low CTC counts. Continuous training and independent image review are required
International study on inter-reader variability for circulating tumor cells in breast cancer
Introduction
Circulating tumor cells (CTCs) have been studied in breast cancer with the CellSearch® system. Given the low CTC counts in non-metastatic breast cancer, it is important to evaluate the inter-reader agreement.
Methods
CellSearch® images (N = 272) of either CTCs or white blood cells or artifacts from 109 non-metastatic (M0) and 22 metastatic (M1) breast cancer patients from reported studies were sent to 22 readers from 15 academic laboratories and 8 readers from two Veridex laboratories. Each image was scored as No CTC vs CTC HER2- vs CTC HER2+. The 8 Veridex readers were summarized to a Veridex Consensus (VC) to compare each academic reader using % agreement and kappa (κ) statistics. Agreement was compared according to disease stage and CTC counts using the Wilcoxon signed rank test.
Results
For CTC definition (No CTC vs CTC), the median agreement between academic readers and VC was 92% (range 69 to 97%) with a median κ of 0.83 (range 0.37 to 0.93). Lower agreement was observed in images from M0 (median 91%, range 70 to 96%) compared to M1 (median 98%, range 64 to 100%) patients (P < 0.001) and from M0 and <3CTCs (median 87%, range 66 to 95%) compared to M0 and ≥3CTCs samples (median 95%, range 77 to 99%), (P < 0.001). For CTC HER2 expression (HER2- vs HER2+), the median agreement was 87% (range 51 to 95%) with a median κ of 0.74 (range 0.25 to 0.90).
Conclusions
The inter-reader agreement for CTC definition was high. Reduced agreement was observed in M0 patients with low CTC counts. Continuous training and independent image review are require
Gene expression profile of circulating tumor cells in breast cancer by RT-qPCR
<p>Abstract</p> <p>Background</p> <p>Circulating tumor cells (CTCs) have been associated with prognosis especially in breast cancer and have been proposed as a liquid biopsy for repeated follow up examinations. Molecular characterization of CTCs is difficult to address since they are very rare and the amount of available sample is very limited.</p> <p>Methods</p> <p>We quantified by RT-qPCR <it>CK-19, MAGE-A3, HER-2, TWIST1, hTERT α+β+</it>, and <it>mammaglobin </it>gene transcripts in immunomagnetically positively selected CTCs from 92 breast cancer patients, and 28 healthy individuals. We also compared our results with the CellSearch system in 33 of these patients with early breast cancer.</p> <p>Results</p> <p>RT-qPCR is highly sensitive and specific and can detect the expression of each individual gene at the one cell level. None of the genes tested was detected in the group of healthy donors. In 66 operable breast cancer patients, <it>CK-19 </it>was detected in 42.4%, <it>HER-2 </it>in 13.6%, <it>MAGE-A3 </it>in 21.2%, <it>hMAM </it>in 13.6%, <it>TWIST-1 </it>in 42.4%, and <it>hTERT α+β+ </it>in 10.2%. In 26 patients with verified metastasis, <it>CK-19 </it>was detected in 53.8%, <it>HER-2 </it>in 19.2%, <it>MAGE-A3 </it>in 15.4%, <it>hMAM </it>in 30.8%, <it>TWIST-1 </it>in 38.5% and <it>hTERT </it>α<sup>+</sup>β<sup>+</sup>in 19.2%. Our preliminary data on the comparison between RT-qPCR and CellSearch in 33 early breast cancer patients showed that RT-qPCR gives more positive results in respect to CellSearch.</p> <p>Conclusions</p> <p>Molecular characterization of CTCs has revealed a remarkable heterogeneity of gene expression between breast cancer patients. In a small percentage of patients, CTCs were positive for all six genes tested, while in some patients only one of these genes was expressed. The clinical significance of these findings in early breast cancer remains to be elucidated when the clinical outcome for these patients is known.</p
Gene expression profile of circulating tumor cells in breast cancer by RT-qPCR
Background: Circulating tumor cells (CTCs) have been associated with prognosis especially in breast cancer and have been proposed as a liquid biopsy for repeated follow up examinations. Molecular characterization of CTCs is difficult to address since they are very rare and the amount of available sample is very limited.Methods: We quantified by RT-qPCR CK-19, MAGE-A3, HER-2, TWIST1, hTERT α+β+, and mammaglobin gene transcripts in immunomagnetically positively selected CTCs from 92 breast cancer patients, and 28 healthy individuals. We also compared our results with the CellSearch system in 33 of these patients with early breast cancer.Results: RT-qPCR is highly sensitive and specific and can detect the expression of each individual gene at the one cell level. None of the genes tested was detected in the group of healthy donors. In 66 operable breast cancer patients, CK-19 was detected in 42.4%, HER-2 in 13.6%, MAGE-A3 in 21.2%, hMAM in 13.6%, TWIST-1 in 42.4%, and hTERT α+β+ in 10.2%. In 26 patients with verified metastasis, CK-19 was detected in 53.8%, HER-2 in 19.2%, MAGE-A3 in 15.4%, hMAM in 30.8%, TWIST-1 in 38.5% and hTERT α+β+in 19.2%. Our preliminary data on the comparison between RT-qPCR and CellSearch in 33 early breast cancer patients showed that RT-qPCR gives more positive results in respect to CellSearch.Conclusions: Molecular characterization of CTCs has revealed a remarkable heterogeneity of gene expression between breast cancer patients. In a small percentage of patients, CTCs were positive for all six genes tested, while in some patients only one of these genes was expressed. The clinical significance of these findings in early breast cancer remains to be elucidated when the clinical outcome for these patients is known. © 2011 Strati et al; licensee BioMed Central Ltd
PIK3CA hotspot mutations in circulating tumor cells and paired circulating tumor DNA in breast cancer: a direct comparison study
Liquid biopsy analysis, mainly based on circulating tumor cells (CTCs) and circulating tumor DNA (ctDNA), provides an extremely powerful tool for the molecular profiling of cancer patients in real time. In this study, we directly compared PIK3CA hotspot mutations (E545K, H1047R) in EpCAM-positive CTCs and paired plasma-ctDNA in breast cancer (BrCa). PIK3CA hotspot mutations in CTCs and ctDNA were analyzed using our previously developed highly sensitive (0.05%), specific, and validated assay in plasma-ctDNA from 77 early and 73 metastatic BrCa patients and 40 healthy donors. We further analyzed and directly compared PIK3CA hotspot mutations in DNAs isolated from CellSearch® cartridges (CTCs) and paired plasma-ctDNA, in 56 cases of early and 27 cases of metastatic breast cancer, and 16 corresponding primary tumors. In plasma-ctDNA, PIK3CA hotspot mutations were identified in 30/77(39.0%) early and 35/73(47.9%) metastatic BrCa cases; none (0/40, 0%) of the healthy donors’ plasma-ctDNA samples were positive. Our direct comparison study in DNAs isolated from CellSearch® cartridges (CTCs) and paired plasma-ctDNA from the same blood draws has shown a lack of concordance in early BrCa (27/56, 48.2%), while the concordance in the metastatic setting was higher (18/27, 66.6%). Our results were validated by ddPCR methodology, and the concordance between our assay and ddPCR for PIK3CA E545K hotspot mutation was 30/37 (81.1%). In many cases, PIK3CA hotspot mutations were detected in samples found to be negative for CTCs in CellSearch®. Our data demonstrated for the first time that (a) PIK3CA hotspot mutations are present at high frequencies in CTCs isolated from CellSearch® cartridges and paired plasma-ctDNA both in early and metastatic BrCa, (b) the detection and concordance of PIK3CA hotspot mutations between plasma-ctDNA and CTCs are higher in the metastatic setting, (c) PIK3CA mutational status significantly changes after therapeutic intervention, and (d) PIK3CA mutation detection in CTCs and plasma-ctDNA provides complementary information. © 2019 The Authors. Published by FEBS Press and John Wiley & Sons Ltd
ESR1 methylation: A Liquid biopsy-based epigenetic assay for the follow up of patients with metastatic breast cancer receiving endocrine treatment: Short running title: Liquid biopsy: ESR1 methylation in CTCs and paired ctDNA
Purpose: Liquid biopsy provides real-time monitoring of tumor evolution and response to therapy through analysis of CTCs and plasma-ctDNA. ESR1 epigenetic silencing potentially affects response to endocrine treatment. We evaluated ESR1 methylation in CTCs and paired plasma-ctDNA. We evaluated ESR1 methylation in CTCs and paired plasma-ctDNA as a potential biomarker for response to everolimus/exemestane treatment. Experimental Design: A highly sensitive and specific real-time MSP assay for ESR1 methylation was developed and validated in: a) 65 primary breast tumors (FFPEs), b) EpCAM+ CTC-fractions (122 patients and 30 healthy donors; HD), c) plasma-ctDNA (108 patients and 30HD), d) in CTCs (CellSearch®) and in paired plasma-ctDNA for 58 BrCa patients. ESR1 methylation status was investigated in CTCs isolated from serial peripheral blood samples of 19 patients with ER+/HER2-advanced BrCa receiving everolimus/exemestane. Results: ESR1 methylation was detected in: a) 25/65(38.5%) FFPEs, b) EpCAM+ CTC-fractions: 26/112(23.3%) patients and 1/30(3.3%) HD, c) plasma-ctDNA: 8/108(7.4%) patients and 1/30(3.3%) HD. ESR1 methylation was highly concordant in 58 paired DNA samples, isolated from CTCs (CellSearch®) and corresponding plasma. In serial peripheral blood samples of patients treated with everolimus/exemestane, ESR1 methylation was observed in 10/36(27.8%) CTC-positive samples, and was associated with lack of response to treatment (p=0.023 Fisher's Exact Test). Conclusions: We report for the first time the detection of ESR1 methylation in CTCs and a high concordance with paired plasma-ctDNA. ESR1 methylation in CTCs was associated with lack of response to everolimus/exemestane regimen. ESR1 methylation should be further evaluated as a potential liquid biopsy-based biomarker. © 2017 American Association for Cancer Research
Assessment of the efficacy and clinical utility of different circulating tumor cell (CTC) detection assays in patients with chemotherapy-naïve advanced or metastatic non-small cell lung cancer (NSCLC)
We herein investigated the detection frequency and clinical relevance of circulating tumor cells (CTCs) in chemotherapy-naïve stage IIIB/IV non-small cell lung cancer (NSCLC), by using the CellSearch and real-time CEACAM5mRNA assays. Blood samples from 43 patients were obtained at different time points during first-line chemotherapy. CellSearch revealed the detection of ≥1 CTCs in 41.9%, 40.9%, and 16.7% of patients at baseline, post-1st, and post-2nd treatment cycle, respectively, and of ≥5 CTCs in 11.6%, 9.1%, and 5.6%, respectively. CEACAM5mRNA+ CTCs were detected in 29.3% and 16% of patients pre-and post-treatment, respectively. The positivity concordance between the two assays was 2.2%. CTC-detection by CellSearch (≥5 CTCs: p = 0.004), CEACAM5mRNA (p = 0.010), or by any assay (p = 0.000) was associated with disease progression. Reduced survival was demonstrated for patients harboring ≥5 CTCs (progression-free survival; PFS: p = 0.000; overall survival; OS: p = 0.009), CEACAM5mRNA+ CTCs (PFS: p = 0.043; OS: p = 0.039), and CTCs by any assay (PFS: p = 0.005; OS: p = 0.006, respectively). CTC-detection by any assay independently predicted for increased risk of relapse (hazard ratio; HR: 3.496; p = 0.001) and death (HR: 2.866; p = 0.008). CellSearch-positivity either pre-, post-1st, or post-2nd cycle, was predictive for shorter PFS (p = 0.036) compared to negativity in all time points. Persistent CEACAM5mRNA-positivity pre-and post-treatment was associated with reduced PFS (p = 0.036) and OS (p = 0.026). In conclusion, CTC detection and monitoring using the CellSearch and CEACAM5mRNA assays provides valuable and complementary clinical information for chemo-naïve advanced or metastatic NSCLC. © 2021 by the authors. Licensee MDPI, Basel, Switzerland