34 research outputs found

    Wear characteristics of ultra-hard cutting tools when machining austempered ductile iron

    Full text link
    Nodularised Ductile Cast Iron, when subjected to heat treatment processes - austenitising and austempering produces Austempered Ductile Iron (ADI). The microstructure of ADI also known as &quot;ausferrite&quot; consists of ferrite, austenite and graphite nodules. Machining ADI using conventional techniques is often a problematic issue due to the microstructural phase transformation from austenite to martensite during machining. This paper evaluates the wear characteristics of ultra hard cutting tools when machining ADI and its effect on machinability. Machining trials consist of turning ADI (ASTMGrade3) using two sets of PCBN tools with 90% and 50% CBN content and two sets of ceramics tools; Aluminium Oxide Titanium Carbide and Silicon Carbide - whisker reinforced Ceramic. The cutting parameters chosen are categorized as roughing and finishing conditions; the roughing condition comprises of constant cutting speed (425 m/min) and depth of cut (2mm) combined with variable feed rates of 0.1, 0.2, 0.3 and 0.4mm/rev. The finishing condition comprises of constant cutting speed (700 m/min) and depth of cut (0.5mm) combined with variable feed rates of 0.1, 0.2, 0.3 and 0.4mm/rev. The benchmark condition to evaluate the performance of the cutting tools was tool wear evaluation, surface texture analysis and cutting force analysis. The paper analyses thermal softening of the workpiece by the tool and its effect on the shearing mechanism under rough and finish machining conditions in term of lower cutting forces and enhanced surface texture of the machined part.<br /

    Tool wear and surface integrity analysis of machined heat treated selective laser melted Ti-6Al-4V

    Full text link
    In this study, the tool wear and surface integrity during machining of wrought and Selective LaserMelted (SLM) titanium alloy (after heat treatment) are studied. Face turning trails were carried out onboth the materials at different cutting speeds of 60,120 and 180 m/min. Cutting tools and machinedspecimens collected are characterized using scanning electron microscope, surface profiler and opticalmicroscope to study the tool wear, machined surface quality and machining induced microstructuralalterations. It was found that high cutting speeds lead to rapid tool wear during machining of SLMTi-6Al-4V materials. Rapid tool wear observed at high cutting speeds in machining SLM Ti-6Al-4Vresulted in damaging the surface integrity by 1) Deposition of chip/work material on the machinedsurface giving rise to higher surface roughness and 2) Increasing the depth of plastic deformationon the machined sub surface

    Impacts of wear and geometry response of the cutting tool on machinability of super austenitic stainless steel

    Full text link
    This paper presents a study of tool wear and geometry response whenmachinability tests were applied under milling operations onthe Super Austenitic Stainless Steel alloy AL-6XN. Eight milling trials were executed under two cutting speeds, two feed rates, andtwo depths of cuts. Cutting edge profile measurements were performed to reveal response of cutting edge geometry to the cuttingparameters and wear. A scanning electron microscope (SEM) was used to inspect the cutting edges. Results showed the presenceof various types of wear such as adhesion wear and abrasion wear on the tool rake and flank faces. Adhesion wear represents theformation of the built-up edge, crater wear, and chipping, whereas abrasion wear represents flank wear.Thecommonly formed wearwas crater wear. Therefore, the optimum tool life among the executed cutting trails was identified according to minimum lengthand depth of the crater wear.The profile measurements showed the formation of new geometries for the worn cutting edges due toadhesion and abrasion wear and the cutting parameters.The formation of the built-up edge was observed on the rake face of thecutting tool. The microstructure of the built-up edge was investigated using SEM. The built-up edge was found to have the austeniteshear lamellar structure which is identical to the formed shear lamellae of the produced chip

    Cutting force and surface finish analysis of machining additive manufactured titanium alloy Ti-6Al-4V

    Full text link
    In this paper, the effect of machining parameters such as cutting speed and feed rate on cutting forces and surface roughness during turning of wrought and additive manufactured titanium alloys Ti-6Al-4V (selective laser melting) was studied. It was found that high cutting speeds and feed rates resulted in high cutting forces and poor surface finish. It was also found that higher cutting forces were required for machining selective laser melted titanium alloy (SLM Ti-6Al-4V) as compared to that of conventionally produced wrought Ti-6Al-4V due to the higher strength and hardness of SLM Ti-6Al-4V. After machining, surface roughness of additive manufactured titanium alloys was found to be low as compared to wrought Ti-6Al-4V because of the high hardness and brittle characteristics of additive manufactured titanium alloys

    Assessment of machining characteristics of austempered ductile iron

    Full text link
    Austempered Ductile Iron (ADI) is a modified Spheroidal Graphite Iron (SGI) produced by applying a two-stage heat treatment cycle of austenitising and austempering. The microstructure of ADI also known as &quot;ausferrite&quot; consists of ferrite, austenite and graphite nodules. Machining ADI using conventional techniques is often problematic due to the microstructural phase transformation from austenite to martensite. Machining trials consisted of drilling ADI-Grades900, 1050, 1200 and 1400 using inserted (TiAlN PVD coated) type drills. The cutting parameters selected were; cutting speeds [m/min] of 30 and 40; penetration rates [mm/rev] of 0.1 and 0.2; to a constant depth of 20mm. The machining characteristics of ADI are evaluated through surface texture analysis and microhardness analysis. These results indicate that microhardness is modified during machining and surface texture is improved using a cutting fluid
    corecore