71 research outputs found

    Outcomes of elective liver surgery worldwide: a global, prospective, multicenter, cross-sectional study

    Get PDF
    Background: The outcomes of liver surgery worldwide remain unknown. The true population-based outcomes are likely different to those vastly reported that reflect the activity of highly specialized academic centers. The aim of this study was to measure the true worldwide practice of liver surgery and associated outcomes by recruiting from centers across the globe. The geographic distribution of liver surgery activity and complexity was also evaluated to further understand variations in outcomes. Methods: LiverGroup.org was an international, prospective, multicenter, cross-sectional study following the Global Surgery Collaborative Snapshot Research approach with a 3-month prospective, consecutive patient enrollment within January–December 2019. Each patient was followed up for 90 days postoperatively. All patients undergoing liver surgery at their respective centers were eligible for study inclusion. Basic demographics, patient and operation characteristics were collected. Morbidity was recorded according to the Clavien–Dindo Classification of Surgical Complications. Country-based and hospital-based data were collected, including the Human Development Index (HDI). (NCT03768141). Results: A total of 2159 patients were included from six continents. Surgery was performed for cancer in 1785 (83%) patients. Of all patients, 912 (42%) experienced a postoperative complication of any severity, while the major complication rate was 16% (341/2159). The overall 90-day mortality rate after liver surgery was 3.8% (82/2,159). The overall failure to rescue rate was 11% (82/ 722) ranging from 5 to 35% among the higher and lower HDI groups, respectively. Conclusions: This is the first to our knowledge global surgery study specifically designed and conducted for specialized liver surgery. The authors identified failure to rescue as a significant potentially modifiable factor for mortality after liver surgery, mostly related to lower Human Development Index countries. Members of the LiverGroup.org network could now work together to develop quality improvement collaboratives

    Carbon emission from thermokarst lakes in NE European tundra

    Full text link
    Emission of greenhouse gases (GHGs) from inland waters is recognized as highly important and an understudied part of the terrestrial carbon (C) biogeochemical cycle. These emissions are still poorly quantified in subarctic regions that contain vast amounts of surface C in permafrost peatlands. This is especially true in NE European peatlands, located within sporadic to discontinuous permafrost zones which are highly vulnerable to thaw. Initial measurements of C emissions from lentic waters of the Bolshezemelskaya Tundra (BZT; 200,000 km2) demonstrated sizable CO2 and CH4 concentrations and fluxes to the atmosphere in 98 depressions, thaw ponds, and thermokarst lakes ranging from 0.5 × 106 to 5 × 106 m2 in size. CO2 fluxes decreased by an order of magnitude as waterbody size increased by > 3 orders of magnitude while CH4 fluxes showed large variability unrelated to lake size. By using a combination of Landsat‐8 and GeoEye‐1 images, we determined lakes cover 4% of BZT and thus calculated overall C emissions from lentic waters to be 3.8 ± 0.65 Tg C yr−1 (99% C‐CO2, 1% C‐CH4), which is two times higher than the lateral riverine export. Large lakes dominated GHG emissions whereas small thaw ponds had a minor contribution to overall water surface area and GHG emissions. These data suggest that, if permafrost thaw in NE Europe results in disappearance of large thermokarst lakes and formation of new small thaw ponds and depressions, GHG emissions from lentic waters in this region may decrease

    Pseudorapidity densities of charged particles with transverse momentum thresholds in pp collisions at √ s = 5.02 and 13 TeV

    Full text link
    The pseudorapidity density of charged particles with minimum transverse momentum (pT) thresholds of 0.15, 0.5, 1, and 2 GeV/c is measured in pp collisions at the center of mass energies of √s=5.02 and 13 TeV with the ALICE detector. The study is carried out for inelastic collisions with at least one primary charged particle having a pseudorapidity (η) within 0.8pT larger than the corresponding threshold. In addition, measurements without pT-thresholds are performed for inelastic and nonsingle-diffractive events as well as for inelastic events with at least one charged particle having |η|2GeV/c), highlighting the importance of such measurements for tuning event generators. The new measurements agree within uncertainties with results from the ATLAS and CMS experiments obtained at √s=13TeV.

    The ALICE Transition Radiation Detector: construction, operation, and performance

    Full text link
    The Transition Radiation Detector (TRD) was designed and built to enhance the capabilities of the ALICE detector at the Large Hadron Collider (LHC). While aimed at providing electron identification and triggering, the TRD also contributes significantly to the track reconstruction and calibration in the central barrel of ALICE. In this paper the design, construction, operation, and performance of this detector are discussed. A pion rejection factor of up to 410 is achieved at a momentum of 1 GeV/ c in p–Pb collisions and the resolution at high transverse momentum improves by about 40% when including the TRD information in track reconstruction. The triggering capability is demonstrated both for jet, light nuclei, and electron selection

    Study of J/ψ azimuthal anisotropy at forward rapidity in Pb–Pb collisions at √sNN = 5.02 TeV

    Full text link
    The second (v2) and third (v3) flow harmonic coefficients of J/ψ mesons are measured at forward rapidity (2.5 < y < 4.0) in Pb-Pb collisions at sNN−−−√ = 5.02 TeV with the ALICE detector at the LHC. Results are obtained with the scalar product method and reported as a function of transverse momentum, pT, for various collision centralities. A positive value of J/ψ v3 is observed with 3.7σ significance. The measurements, compared to those of prompt D0 mesons and charged particles at mid-rapidity, indicate an ordering with vn(J/ψ) <vn(D0) <vn(h±) (n = 2, 3) at low and intermediate pT up to 6 GeV/c and a convergence with v2(J/ψ) ≈v2(D0) ≈v2(h±) at high pT above 6-8 GeV/c. In semi-central collisions (5-40% and 10-50% centrality intervals) at intermediate pT between 2 and 6 GeV/c, the ratio v3/v2 of J/ψ mesons is found to be significantly lower (4.6σ) with respect to that of charged particles. In addition, the comparison to the prompt D0-meson ratio in the same pT interval suggests an ordering similar to that of the v2 and v3 coefficients. The J/ψ v2 coefficient is further studied using the Event Shape Engineering technique. The obtained results are found to be compatible with the expected variations of the eccentricity of the initial-state geometry

    Direct photon elliptic flow in Pb–Pb collisions at √sNN = 2.76 TeV

    Full text link
    The elliptic flow of inclusive and direct photons was measured at mid-rapidity in two centrality classes 0-20% and 20-40% in Pb-Pb collisions at sNN−−−√ =2.76 TeV by ALICE. Photons were detected with the highly segmented electromagnetic calorimeter PHOS and via conversions in the detector material with the e+e− pairs reconstructed in the central tracking system. The results of the two methods were combined and the direct photon elliptic flow was extracted in the transverse momentum range 0.9<pT<6.2 GeV/c. We test the hypothesis vγ,dir2≡0 for 0.9<pT<2.1 GeV/c and obtain a significance of 1.4σ for the 0-20% class and 1.0σ for the 20-40% class. A comparison to RHIC data shows a similar magnitude of the measured elliptic flow, while hydrodynamic and transport model calculations predict a smaller flow than observed

    Measurement of D-meson production at mid-rapidity in pp collisions at √s = 7 TeV

    Full text link
    The production cross sections of the prompt charmed mesons D0, D+, D∗+ and D+s were measured at mid-rapidity in proton-proton collisions at a centre-of-mass energy s√=7 TeV with the ALICE detector at the Large Hadron Collider (LHC). D mesons were reconstructed from their decays D0→K−π+, D+→K−π+π+, D∗+→D0π+, D+s→ϕπ+→K−K+π+, and their charge conjugates. With respect to previous measurements in the same rapidity region, the coverage in transverse momentum (pT) is extended and the uncertainties are reduced by a factor of about two. The accuracy on the estimated total cc¯¯ production cross section is likewise improved. The measured pT-differential cross sections are compared with the results of three perturbative QCD calculations

    Production of π0 and η mesons up to high transverse momentum in pp collisions at 2.76 TeV

    Full text link
    The invariant differential cross sections for inclusive π0 and η mesons at midrapidity were measured in pp collisions at s√=2.76 TeV for transverse momenta 0.4<pT<40 GeV/c and 0.6<pT<20 GeV/c, respectively, using the ALICE detector. This large range in pT was achieved by combining various analysis techniques and different triggers involving the electromagnetic calorimeter (EMCal). In particular, a new single-cluster, shower-shape based method was developed for the identification of high-pT neutral pions, which exploits that the showers originating from their decay photons overlap in the EMCal. The measured cross sections are found to exhibit a similar power-law behavior with an exponent of about 6.3. Next-to-leading-order perturbative QCD calculations differ from the measured cross sections by about 30% for the π0, and between 30-50% for the η meson, while generator-level simulations with PYTHIA 8.2 describe the data to better than 10-30%, except at pT<1 GeV/c. The new data can therefore be used to further improve the theoretical description of π0 and η meson production

    Multiplicity dependence of light-flavor hadron production in pp collisions at √s = 7 TeV

    Full text link
    Comprehensive results on the production of unidentified charged particles, π±, K±, K0S, K*(892)0, p, p¯¯¯, ϕ(1020), Λ, Λ¯¯¯¯, Ξ−, Ξ¯¯¯¯+, Ω− and Ω¯¯¯¯+ hadrons in proton-proton (pp) collisions at s√ = 7 TeV at midrapidity (|y|<0.5) as a function of charged-particle multiplicity density are presented. In order to avoid auto-correlation biases, the actual transverse momentum (pT) spectra of the particles under study and the event activity are measured in different rapidity windows. In the highest multiplicity class, the charged-particle density reaches about 3.5 times the value measured in inelastic collisions. While the yield of protons normalized to pions remains approximately constant as a function of multiplicity, the corresponding ratios of strange hadrons to pions show a significant enhancement that increases with increasing strangeness content. Furthermore, all identified particle to pion ratios are shown to depend solely on charged-particle multiplicity density, regardless of system type and collision energy. The evolution of the spectral shapes with multiplicity and hadron mass shows patterns that are similar to those observed in p-Pb and Pb-Pb collisions at LHC energies. The obtained pT distributions and yields are compared to expectations from QCD-based pp event generators as well as to predictions from thermal and hydrodynamic models. These comparisons indicate that traces of a collective, equilibrated system are already present in high-multiplicity pp collisions
    corecore