10 research outputs found

    Disrupting actin filaments enhances glucose-stimulated insulin secretion independent of the cortical actin cytoskeleton

    Get PDF
    Just under the plasma membrane of most animal cells lies a dense meshwork of actin filaments called the cortical cytoskeleton. In insulin-secreting pancreatic β cells, a long-standing model posits that the cortical actin layer primarily acts to restrict access of insulin granules to the plasma membrane. Here we test this model and find that stimulating β cells with pro-secretory stimuli (glucose and/or KCl) has little impact on the cortical actin layer. Chemical perturbations of actin polymerization, by either disrupting or enhancing filamentation, dramatically enhance glucose-stimulated insulin secretion. Using scanning electron microscopy, we directly visualize the cortical cytoskeleton, allowing us to validate the effect of these filament-disrupting chemicals. We find the state of the cortical actin layer does not correlate with levels of insulin secretion, suggesting filament disruptors act on insulin secretion independently of the cortical cytoskeleton

    Circadian clock protein BMAL1 broadly influences autophagy and endolysosomal function in astrocytes

    Get PDF
    An emerging role for the circadian clock in autophagy and lysosome function has opened new avenues for exploration in the field of neurodegeneration. The daily rhythms of circadian clock proteins may coordinate gene expression programs involved not only in daily rhythms but in many cellular processes. In the brain, astrocytes are critical for sensing and responding to extracellular cues to support neurons. The core clock protein BMAL1 serves as the primary positive circadian transcriptional regulator and its depletion in astrocytes not only disrupts circadian function but also leads to a unique cell-autonomous activation phenotype. We report here that astrocyte-specific deletion o

    Scanning electron microscopy of human islet cilia

    Get PDF
    Human islet primary cilia are vital glucose-regulating organelles whose structure remains uncharacterized. Scanning electron microscopy (SEM) is a useful technique for studying the surface morphology of membrane projections like cilia, but conventional sample preparation does not reveal the submembrane axonemal structure, which holds key implications for ciliary function. To overcome this challenge, we combined SEM with membrane-extraction techniques to examine primary cilia in native human islets. Our data show well-preserved cilia subdomains which demonstrate both expected and unexpected ultrastructural motifs. Morphometric features were quantified when possible, including axonemal length and diameter, microtubule conformations, and chirality. We further describe a ciliary ring, a structure that may be a specialization in human islets. Key findings are correlated with fluorescence microscopy and interpreted in the context of cilia function as a cellular sensor and communications locus in pancreatic islets

    The nepenthesin insert in the Plasmodium falciparum aspartic protease plasmepsin V is necessary for enzyme function

    Get PDF
    Plasmepsin V (PM V) is a pepsin-like aspartic protease essential for growth of the malarial parasite Plasmodium falciparum. Previous work has shown PM V to be an endoplasmic reticulum-resident protease that processes parasite proteins destined for export into the host cell. Depletion or inhibition of the enzyme is lethal during asexual replication within red blood cells as well as during the formation of sexual stage gametocytes. The structure of the Plasmodium vivax PM V has been characterized by X-ray crystallography, revealing a canonical pepsin fold punctuated by structural features uncommon to secretory aspartic proteases; however, the function of this unique structure is unclear. Here, we used parasite genetics to probe these structural features by attempting to rescue lethal PM V depletion with various mutant enzymes. We found an unusual nepenthesin 1-type insert in the PM V gene to be essential for parasite growth and PM V activity. Mutagenesis of the nepenthesin insert suggests that both its amino acid sequence and one of the two disulfide bonds that undergird its structure are required for the insert\u27s role in PM V function. Furthermore, molecular dynamics simulations paired with Markov state modeling suggest that mutations to the nepenthesin insert may allosterically affect PM V catalysis through multiple mechanisms. Taken together, these data provide further insights into the structure of the P. falciparum PM V protease

    Enzymatic and structural characterization of HAD5, an essential phosphomannomutase of malaria-causing parasites

    Get PDF
    The malaria-causing parasite Plasmodium falciparum is responsible for over 200 million infections and 400,000 deaths per year. At multiple stages during its complex life cycle, P. falciparum expresses several essential proteins tethered to its surface by glycosylphosphatidylinositol (GPI) anchors, which are critical for biological processes such as parasite egress and reinvasion of host red blood cells. Targeting this pathway therapeutically has the potential to broadly impact parasite development across several life stages. Here, we characterize an upstream component of parasite GPI anchor biosynthesis, the putative phosphomannomutase (PMM) (EC 5.4.2.8), HAD5 (PF3D7_1017400). We confirmed the PMM and phosphoglucomutase activities of purified recombinant HAD5 by developing novel linked enzyme biochemical assays. By regulating the expression of HAD5 in transgenic parasites with a TetR-DOZI-inducible knockdown system, we demonstrated that HAD5 is required for malaria parasite egress and erythrocyte reinvasion, and we assessed the role of HAD5 in GPI anchor synthesis by autoradiography of radiolabeled glucosamine and thin layer chromatography. Finally, we determined the three-dimensional X-ray crystal structure of HAD5 and identified a substrate analog that specifically inhibits HAD5 compared to orthologous human PMMs in a time-dependent manner. These findings demonstrate that the GPI anchor biosynthesis pathway is exceptionally sensitive to inhibition in parasites and that HAD5 has potential as a specific, multistage antimalarial target

    The mature N-termini of Plasmodium effector proteins confer specificity of export

    No full text
    ABSTRACT The intraerythrocytic malaria parasite Plasmodium falciparum exports hundreds of proteins into the host red blood cell (RBC). Most are targeted to the endoplasmic reticulum (ER) by a stretch of hydrophobic amino acids and cleaved further downstream at a conserved motif called the Plasmodium Export Element (PEXEL) by the ER protease plasmepsin V (PM V). The mature effectors then travel through the secretory pathway to the parasitophorous vacuole (PV) that surrounds the parasite. There, PEXEL proteins are somehow recognized as export-destined proteins, as opposed to PV-resident proteins, and are selectively translocated out into the RBC. The mature N-terminus appears to be important for export. There is conflicting data on whether PM V cleavage is needed for proper export or whether any means of generating the mature N-terminus would suffice. We replaced the PEXEL-containing N-terminal sequence of an exported GFP reporter with a signal peptide sequence and showed that precise cleavage by signal peptidase, generating the proper mature N-terminus, yields export competence. Expressing a construct with only the native ER targeting signal without the PM V cleavage site dramatically decreased the amount of a mature PEXEL reporter, indicating that the hydrophobic stretch lacks an efficient cleavage signal. Therefore, the PEXEL motif functions as a specialized signal cleavage site when appropriately located after an ER targeting sequence. Our data suggest that PM V cleavage and RBC export are two independent events for PEXEL proteins. We also tested and rejected the hypothesis that an alpha-helical mature N-terminus is necessary for export. IMPORTANCE Malaria parasites export hundreds of proteins to the cytoplasm of the host red blood cells for their survival. A five amino acid sequence, called the PEXEL motif, is conserved among many exported proteins and is thought to be a signal for export. However, the motif is cleaved inside the endoplasmic reticulum of the parasite, and mature proteins starting from the fourth PEXEL residue travel to the parasite periphery for export. We showed that the PEXEL motif is dispensable for export as long as identical mature proteins can be efficiently produced via alternative means in the ER. We also showed that the exported and non-exported proteins are differentiated at the parasite periphery based on their mature N-termini; however, any discernible export signal within that region remained cryptic. Our study resolves a longstanding paradox in PEXEL protein trafficking
    corecore