3 research outputs found

    Numerical analysis of the stress-strain state of osteotomies of the first metatarsal bone

    Get PDF
    Deviation of the first toe to the outside, interconnected with the deviation of the first metatarsal bone to the inside, occurs in 46% of patients of the older age group and is called valgus deformity of the first toe. The negative impact of this pathology on the quality of life of patients is the reason for seeking medical help, the gold standard of which is surgical correction, and the basic surgical technique is osteotomy (sawing the bone and fixing its fragments with implants) of the first metatarsal. At the same time, an ideal osteotomy should provide initial stability in the early postoperative period. However, a large number of ways to perform osteotomy, as well as the advantages and disadvantages of each of the surgical techniques, do not allow to consider one of them as the most successful. In this regard, the aim of the work was to develop and validate a biomechanical model of osteotomy of the first metatarsal bone to analyze its stability and reliability depending on the type of osteotomy, the degree of displacement of bone fragments, as well as the number of fastening screws. In this study, biomechanical modeling of the most commonly used variants of osteotomy of the first metatarsal bone of the foot in the surgical treatment of its valgus deformity was carried out. For this purpose, 10 models of osteotomies of a separate first metatarsal bone were created, which were then subjected to static loading to analyze their stress-strain state and assess their success. Successful (stable and reliable) treatment options were identified, as well as unsuccessful ones. Two of the ten options considered were unsuccessful – scarf type osteotomies with displacement of bone fragments by 2/3 of its diameter and fixed with a single screw. It was revealed that osteotomies of the chevron type showed higher stability in comparison with scarf osteotomies. As a result, we note that in this study, numerical experiments were conducted for the first time to compare the stability and strength of the most commonly used variants of osteotomies based on a single bone model. A biomechanical model of scarf osteotomy of the first metatarsal bone has been developed and validated on the basis of mechanical experiments

    Morphology and biomechanics of human heart

    No full text
    Object of study: A study of the biomechanical characteristics of the human heart ventricles was performed. 80 hearts were extracted during autopsy of 80 corpses of adults (40 women and 40 men) aged 31-70 years. The samples were investigated in compliance with the recommendations of the ethics committee. Methods: Tension and compression tests were performed with help of the uniaxial testing machine Instron 5944. Cardiometry was also performed. Results: In this work, techniques for human heart ventricle wall biomechanical properties estimation were developed. Regularities of age and gender variability in deformative and strength properties of the right and left ventricle walls were found. These properties were characterized by a smooth growth of myocardial tissue stiffness and resistivity at a relatively low strain against reduction in their strength and elasticity from 31-40 to 61-70 years. It was found that tissue of the left ventricle at 61-70 years had a lower stretchability and strength compared with tissues of the right ventricle and septum. These data expands understanding of the morphological organization of the heart ventricles, which is very important for the development of personalized medicine. Taking into account individual, age and gender differences of the heart ventricle tissue biomechanical characteristics allows to rationally choosing the type of patching materials during reconstructive operations on heart

    Patient-specific modeling of human cardiovascular system elements

    No full text
    Object of study: The research is aimed at development of personalized medical treatment. Algorithm was developed for patient-specific surgical interventions of the cardiovascular system pathologies. Methods: Geometrical models of the biological objects and initial and boundary conditions were realized by medical diagnostic data of the specific patient. Mechanical and histomorphological parameters were obtained with the help mechanical experiments on universal testing machine. Computer modeling of the studied processes was conducted with the help of the finite element method. Results: Results of the numerical simulation allowed evaluating the physiological processes in the studied object in normal state, in presence of different pathologies and after different types of surgical procedures
    corecore