4 research outputs found

    Coordinate-invariant Path Integral Methods in Conformal Field Theory

    Full text link
    We present a coordinate-invariant approach, based on a Pauli-Villars measure, to the definition of the path integral in two-dimensional conformal field theory. We discuss some advantages of this approach compared to the operator formalism and alternative path integral approaches. We show that our path integral measure is invariant under conformal transformations and field reparametrizations, in contrast to the measure used in the Fujikawa calculation, and we show the agreement, despite different origins, of the conformal anomaly in the two approaches. The natural energy-momentum in the Pauli-Villars approach is a true coordinate-invariant tensor quantity, and we discuss its nontrivial relationship to the corresponding non-tensor object arising in the operator formalism, thus providing a novel explanation within a path integral context for the anomalous Ward identities of the latter. We provide a direct calculation of the nontrivial contact terms arising in expectation values of certain energy-momentum products, and we use these to perform a simple consistency check confirming the validity of the change of variables formula for the path integral. Finally, we review the relationship between the conformal anomaly and the energy-momentum two-point functions in our formalism.Comment: Corrected minor typos. To appear in International Journal of Modern Physics

    Weyl-Conformally-Invariant Lightlike p-Brane Theories: New Aspects in Black Hole Physics and Kaluza-Klein Dynamics

    Full text link
    We introduce and study in some detail the properties of a novel class of Weyl-conformally invariant p-brane theories which describe intrinsically lightlike branes for any odd world-volume dimension. Their dynamics significantly differs from that of the ordinary (conformally non-invariant) Nambu-Goto p-branes. We present explicit solutions of the Weyl-invariant lightlike brane- (WILL-brane) equations of motion in various gravitational models of physical relevance exhibiting various new phenomena. In D=4 the WILL-membrane serves as a material and charged source for gravity and electromagnetism in the coupled Einstein-Maxwell-WILL-membrane system; it automatically positions itself on (``straddles'') the common event horizon of the corresponding matching black hole solutions, thus providing an explicit dynamical realization of the membrane paradigm in black hole physics. In product spaces of interest in Kaluza-Klein theories the WILL-brane wraps non-trivially around the compact (internal)dimensions and still describes massless mode dynamics in the non-compact (space-time) dimensions. Due to nontrivial variable size of the internal compact dimensions we find new types of physically interesting solutions describing massless brane modes trapped on bounded planar circular orbits with non-trivial angular momentum, and with linear dependence between energy and angular momentum.Comment: 28 pages, published versio
    corecore