152 research outputs found
Editorial: Sensorimotor Foundations of Social Cognition
[No abstract available
Empowerment for Continuous Agent-Environment Systems
This paper develops generalizations of empowerment to continuous states.
Empowerment is a recently introduced information-theoretic quantity motivated
by hypotheses about the efficiency of the sensorimotor loop in biological
organisms, but also from considerations stemming from curiosity-driven
learning. Empowemerment measures, for agent-environment systems with stochastic
transitions, how much influence an agent has on its environment, but only that
influence that can be sensed by the agent sensors. It is an
information-theoretic generalization of joint controllability (influence on
environment) and observability (measurement by sensors) of the environment by
the agent, both controllability and observability being usually defined in
control theory as the dimensionality of the control/observation spaces. Earlier
work has shown that empowerment has various interesting and relevant
properties, e.g., it allows us to identify salient states using only the
dynamics, and it can act as intrinsic reward without requiring an external
reward. However, in this previous work empowerment was limited to the case of
small-scale and discrete domains and furthermore state transition probabilities
were assumed to be known. The goal of this paper is to extend empowerment to
the significantly more important and relevant case of continuous vector-valued
state spaces and initially unknown state transition probabilities. The
continuous state space is addressed by Monte-Carlo approximation; the unknown
transitions are addressed by model learning and prediction for which we apply
Gaussian processes regression with iterated forecasting. In a number of
well-known continuous control tasks we examine the dynamics induced by
empowerment and include an application to exploration and online model
learning
Integrated information increases with fitness in the evolution of animats
One of the hallmarks of biological organisms is their ability to integrate
disparate information sources to optimize their behavior in complex
environments. How this capability can be quantified and related to the
functional complexity of an organism remains a challenging problem, in
particular since organismal functional complexity is not well-defined. We
present here several candidate measures that quantify information and
integration, and study their dependence on fitness as an artificial agent
("animat") evolves over thousands of generations to solve a navigation task in
a simple, simulated environment. We compare the ability of these measures to
predict high fitness with more conventional information-theoretic processing
measures. As the animat adapts by increasing its "fit" to the world,
information integration and processing increase commensurately along the
evolutionary line of descent. We suggest that the correlation of fitness with
information integration and with processing measures implies that high fitness
requires both information processing as well as integration, but that
information integration may be a better measure when the task requires memory.
A correlation of measures of information integration (but also information
processing) and fitness strongly suggests that these measures reflect the
functional complexity of the animat, and that such measures can be used to
quantify functional complexity even in the absence of fitness data.Comment: 27 pages, 8 figures, one supplementary figure. Three supplementary
video files available on request. Version commensurate with published text in
PLoS Comput. Bio
DNA repair, genome stability and cancer: a historical perspective
The multistep process of cancer progresses over many years. The prevention of mutations by DNA repair pathways led to an early appreciation of a role for repair in cancer avoidance. However, the broader role of the DNA damage response (DDR) emerged more slowly. In this Timeline article, we reflect on how our understanding of the steps leading to cancer developed, focusing on the role of the DDR. We also consider how our current knowledge can be exploited for cancer therapy
- …