1,800 research outputs found

    Theoretical investigation of finite size effects at DNA melting

    Get PDF
    We investigated how the finiteness of the length of the sequence affects the phase transition that takes place at DNA melting temperature. For this purpose, we modified the Transfer Integral method to adapt it to the calculation of both extensive (partition function, entropy, specific heat, etc) and non-extensive (order parameter and correlation length) thermodynamic quantities of finite sequences with open boundary conditions, and applied the modified procedure to two different dynamical models. We showed that rounding of the transition clearly takes place when the length of the sequence is decreased. We also performed a finite-size scaling analysis of the two models and showed that the singular part of the free energy can indeed be expressed in terms of an homogeneous function. However, both the correlation length and the average separation between paired bases diverge at the melting transition, so that it is no longer clear to which of these two quantities the length of the system should be compared. Moreover, Josephson's identity is satisfied for none of the investigated models, so that the derivation of the characteristic exponents which appear, for example, in the expression of the specific heat, requires some care

    Comment on "Why is the DNA denaturation transition first order?"

    Get PDF
    In this comment we argue that while the conclusions in the original paper (Y. Kafri, D. Mukamel and L. Peliti, Phys. Rev. Lett. 85, 4988 (2000)) are correct for asymptotically long DNA chains, they do not apply to the chains used in typical experiments. In the added last paragraph, we point out that for real DNA the average distance between denatured loops is not of the order of the persistence length of a single-stranded chain but much larger. This corroborates our reasoning that the double helix between loops is quite rigid, and thereby our conclusion.Comment: 1 page, REVTeX. Last paragraph adde

    Higgs Boson Decays to Neutralinos in Low-Scale Gauge Mediation

    Full text link
    We study the decays of a standard model-like MSSM Higgs boson to pairs of neutralinos, each of which subsequently decays promptly to a photon and a gravitino. Such decays can arise in supersymmetric scenarios where supersymmetry breaking is mediated to us by gauge interactions with a relatively light gauge messenger sector (M_{mess} < 100 TeV). This process gives rise to a collider signal consisting of a pair of photons and missing energy. In the present work we investigate the bounds on this scenario within the minimal supersymmetric standard model from existing collider data. We also study the prospects for discovering the Higgs boson through this decay mode with upcoming data from the Tevatron and the LHC.Comment: 18 pages, 5 figures, added references and discussion of neutralino couplings, same as journal versio

    The self-assembly of DNA Holliday junctions studied with a minimal model

    Full text link
    In this paper, we explore the feasibility of using coarse-grained models to simulate the self-assembly of DNA nanostructures. We introduce a simple model of DNA where each nucleotide is represented by two interaction sites corresponding to the phosphate-sugar backbone and the base. Using this model, we are able to simulate the self-assembly of both DNA duplexes and Holliday junctions from single-stranded DNA. We find that assembly is most successful in the temperature window below the melting temperatures of the target structure and above the melting temperature of misbonded aggregates. Furthermore, in the case of the Holliday junction, we show how a hierarchical assembly mechanism reduces the possibility of becoming trapped in misbonded configurations. The model is also able to reproduce the relative melting temperatures of different structures accurately, and allows strand displacement to occur.Comment: 13 pages, 14 figure

    Phase transition in a non-conserving driven diffusive system

    Full text link
    An asymmetric exclusion process comprising positive particles, negative particles and vacancies is introduced. The model is defined on a ring and the dynamics does not conserve the number of particles. We solve the steady state exactly and show that it can exhibit a continuous phase transition in which the density of vacancies decreases to zero. The model has no absorbing state and furnishes an example of a one-dimensional phase transition in a homogeneous non-conserving system which does not belong to the absorbing state universality classes

    Numerical study of the disordered Poland-Scheraga model of DNA denaturation

    Full text link
    We numerically study the binary disordered Poland-Scheraga model of DNA denaturation, in the regime where the pure model displays a first order transition (loop exponent c=2.15>2c=2.15>2). We use a Fixman-Freire scheme for the entropy of loops and consider chain length up to N=4105N=4 \cdot 10^5, with averages over 10410^4 samples. We present in parallel the results of various observables for two boundary conditions, namely bound-bound (bb) and bound-unbound (bu), because they present very different finite-size behaviors, both in the pure case and in the disordered case. Our main conclusion is that the transition remains first order in the disordered case: in the (bu) case, the disorder averaged energy and contact densities present crossings for different values of NN without rescaling. In addition, we obtain that these disorder averaged observables do not satisfy finite size scaling, as a consequence of strong sample to sample fluctuations of the pseudo-critical temperature. For a given sample, we propose a procedure to identify its pseudo-critical temperature, and show that this sample then obeys first order transition finite size scaling behavior. Finally, we obtain that the disorder averaged critical loop distribution is still governed by P(l)1/lcP(l) \sim 1/l^c in the regime lNl \ll N, as in the pure case.Comment: 12 pages, 13 figures. Revised versio

    Griffiths singularities in unbinding of strongly disordered polymers

    Full text link
    Griffiths singularities occurring in the unbinding of strongly disordered heteropolymers are studied. A model with two randomly distributed binding energies -1 and -v, is introduced and studied analytically by analyzing the Lee-Yang zeros of the partition sum. It is demonstrated that in the limit v -> infinity the model exhibits a Griffiths type singularity at a temperature T_G =O(1) corresponding to melting of long homogeneous domains of the low binding energy. For finite v >> 1 the model is expected to exhibit an additional, unbinding, transition at a high temperature T_M=O(v)

    Roles of stiffness and excluded volume in DNA denaturation

    Full text link
    The nature and the universal properties of DNA thermal denaturation are investigated by Monte Carlo simulations. For suitable lattice models we determine the exponent c describing the decay of the probability distribution of denaturated loops of length l, PlcP \sim l^{-c}. If excluded volume effects are fully taken into account, c= 2.10(4) is consistent with a first order transition. The stiffness of the double stranded chain has the effect of sharpening the transition, if it is continuous, but not of changing its order and the value of the exponent c, which is also robust with respect to inclusion of specific base-pair sequence heterogeneities.Comment: RevTeX 4 Pages and 4 PostScript figures included. Final version as publishe

    Scaling in DNA unzipping models: denaturated loops and end-segments as branches of a block copolymer network

    Full text link
    For a model of DNA denaturation, exponents describing the distributions of denaturated loops and unzipped end-segments are determined by exact enumeration and by Monte Carlo simulations in two and three dimensions. The loop distributions are consistent with first order thermal denaturation in both cases. Results for end-segments show a coexistence of two distinct power laws in the relative distributions, which is not foreseen by a recent approach in which DNA is treated as a homogeneous network of linear polymer segments. This unexpected feature, and the discrepancies with such an approach, are explained in terms of a refined scaling picture in which a precise distinction is made between network branches representing single stranded and effective double stranded segments.Comment: 8 pages, 8 figure

    Sequence-dependent thermodynamics of a coarse-grained DNA model

    Get PDF
    We introduce a sequence-dependent parametrization for a coarse-grained DNA model [T. E. Ouldridge, A. A. Louis, and J. P. K. Doye, J. Chem. Phys. 134, 085101 (2011)] originally designed to reproduce the properties of DNA molecules with average sequences. The new parametrization introduces sequence-dependent stacking and base-pairing interaction strengths chosen to reproduce the melting temperatures of short duplexes. By developing a histogram reweighting technique, we are able to fit our parameters to the melting temperatures of thousands of sequences. To demonstrate the flexibility of the model, we study the effects of sequence on: (a) the heterogeneous stacking transition of single strands, (b) the tendency of a duplex to fray at its melting point, (c) the effects of stacking strength in the loop on the melting temperature of hairpins, (d) the force-extension properties of single strands and (e) the structure of a kissing-loop complex. Where possible we compare our results with experimental data and find a good agreement. A simulation code called oxDNA, implementing our model, is available as free software.Comment: 15 page
    corecore