229 research outputs found
Contributions of spontaneous phase slippage to linear and non-linear conduction near the Peierls transition in thin samples of o-TaS_3
In the Peierls state very thin samples of TaS_3 (cross-section area \sim
10^{-3} mkm^2) are found to demonstrate smearing of the I-V curves near the
threshold field. With approaching the Peierls transition temperature, T_P, the
smearing evolves into smooth growth of conductance from zero voltage
interpreted by us as the contribution of fluctuations to the non--linear
conductance. We identify independently the fluctuation contribution to the
linear conductance near T_P. Both linear and non-linear contributions depend on
temperature with close activation energies \sim (2 - 4) x 10^3 K and apparently
reveal the same process. We reject creep of the {\it continuous} charge-density
waves (CDWs) as the origin of this effect and show that it is spontaneous phase
slippage that results in creep of the CDW. A model is proposed accounting for
both the linear and non-linear parts of the fluctuation conduction up to T_P.Comment: 6 pages, 5 Postscript figure, RevTeX, accepted for publication in PR
Periodic sequences of arbitrage: a tale of four currencies
This paper investigates arbitrage chains involving four currencies and four foreign exchange trader‐arbitrageurs. In contrast with the three‐currency case, we find that arbitrage operations when four currencies are present may appear periodic in nature, and not involve smooth convergence to a ‘balanced’ ensemble of exchange rates in which the law of one price holds. The goal of this article is to understand some interesting features of sequences of arbitrage operations, features which might well be relevant in other contexts in finance and economics
Fermion Analogy for Layered Superconducting Films in Parallel Magnetic Field
The equivalence between the Lawrence-Doniach model for films of extreme
type-II layered superconductors and a generalization of the back-scattering
model for spin-1/2 electrons in one dimension is demonstrated. This fermion
analogy is then exploited to obtain an anomalous tail for
the parallel equilibrium magnetization of the minimal double layer case in the
limit of high parallel magnetic fields for temperatures in the
critical regime.Comment: 11 pages of plain TeX, 1 postscript figur
Disorder-driven superconductor-normal metal phase transition in quasi-one-dimensional organic conductors
Effects of non-magnetic disorder on the critical temperature T_c and on
diamagnetism of quasi-one-dimensional superconductors are reported. The energy
of Josephson-coupling between wires is considered to be random, which is
typical for dirty organic superconductors. We show that this randomness
destroys phase coherence between wires and that T_c vanishes discontinuously at
a critical disorder-strength. The parallel and transverse components of the
penetration-depth are evaluated. They diverge at different critical
temperatures T_c^{(1)} and T_c, which correspond to pair-breaking and
phase-coherence breaking respectively. The interplay between disorder and
quantum phase fluctuations is shown to result in quantum critical behavior at
T=0, which manifests itself as a superconducting-normal metal phase transition
of first-order at a critical disorder strength.Comment: 12 pages, 3 figure
Spin-Torque-Induced Rotational Dynamics of a Magnetic Vortex Dipole
We study, both experimentally and by numerical modeling, the magnetic
dynamics that can be excited in a magnetic thin-film nanopillar device using
the spin torque from a spatially localized current injected via a
10s-of-nm-diameter aperture. The current-driven magnetic dynamics can produce
large amplitude microwave emission at zero magnetic field, with a frequency
well below that of the uniform ferromagnetic resonance mode. Micromagnetic
simulations indicate that the physical origin of this efficient microwave
nano-oscillator is the nucleation and subsequent steady-state rotational
dynamics of a magnetic vortex dipole driven by the localized spin torque. These
results show this novel implementation of a spintronic nano-oscillator is a
promising candidate for microwave technology applications.Comment: 19 pages, 4 figures
Parametric Generation of Second Sound by First Sound in Superfluid Helium
We report the first experimental observation of parametric generation of
second sound (SS) by first sound (FS) in superfluid helium in a narrow
temperature range in the vicinity of . The temperature dependence
of the threshold FS amplitude is found to be in a good quantitative agreement
with the theory suggested long time ago and corrected for a finite geometry.
Strong amplitude fluctuations and two types of the SS spectra are observed
above the bifurcation. The latter effect is quantitatively explained by the
discreteness of the wave vector space and the strong temperature dependence of
the SS dissipation length.Comment: 4 pages, 4 postscript figures, REVTE
Parametric generation of second sound in superfluid helium: linear stability and nonlinear dynamics
We report the experimental studies of a parametric excitation of a second
sound (SS) by a first sound (FS) in a superfluid helium in a resonance cavity.
The results on several topics in this system are presented: (i) The linear
properties of the instability, namely, the threshold, its temperature and
geometrical dependencies, and the spectra of SS just above the onset were
measured. They were found to be in a good quantitative agreement with the
theory. (ii) It was shown that the mechanism of SS amplitude saturation is due
to the nonlinear attenuation of SS via three wave interactions between the SS
waves. Strong low frequency amplitude fluctuations of SS above the threshold
were observed. The spectra of these fluctuations had a universal shape with
exponentially decaying tails. Furthermore, the spectral width grew continuously
with the FS amplitude. The role of three and four wave interactions are
discussed with respect to the nonlinear SS behavior. The first evidence of
Gaussian statistics of the wave amplitudes for the parametrically generated
wave ensemble was obtained. (iii) The experiments on simultaneous pumping of
the FS and independent SS waves revealed new effects. Below the instability
threshold, the SS phase conjugation as a result of three-wave interactions
between the FS and SS waves was observed. Above the threshold two new effects
were found: a giant amplification of the SS wave intensity and strong resonance
oscillations of the SS wave amplitude as a function of the FS amplitude.
Qualitative explanations of these effects are suggested.Comment: 73 pages, 23 figures. to appear in Phys. Rev. B, July 1 st (2001
Interference Effects in Schwinger Vacuum Pair Production for Time-Dependent Laser Pulses
We present simple new approximate formulas, for both scalar and spinor QED,
for the number of particles produced from vacuum by a time dependent electric
field, incorporating the interference effects that arise from an arbitrary
number of distinct semiclassical turning points. Such interference effects are
important when the temporal profile of the laser pulse has subcycle structure.
We show how the resulting semiclassical intuition may be used to guide the
design of temporal profiles that enhance the momentum spectrum due to
interference effects. The result is easy to implement and generally applicable
to time-dependent tunneling problems, such as appear in many other contexts in
particle and nuclear physics, condensed matter physics, atomic physics,
chemical physics, and gravitational physics.Comment: 19 pages; 21 figures; v2 refs update
Coupling of the lattice and superlattice deformations and hysteresis in thermal expansion for the quasi one-dimensional conductor TaS
An original interferometer-based setup for measurements of length of
needle-like samples is developed, and thermal expansion of o-TaS crystals
is studied. Below the Peierls transition the temperature hysteresis of length
is observed, the width of the hysteresis loop being up to . The behavior of the loop is anomalous: the length changes so
that it is in front of its equilibrium value. The hysteresis loop couples with
that of conductivity. The sign and the value of the length hysteresis are
consistent with the strain dependence of the charge-density waves (CDW) wave
vector. With lowering temperature down to 100 K the CDW elastic modulus grows
achieving a value comparable with the lattice Young modulus. Our results could
be helpful in consideration of different systems with intrinsic
superstructures.Comment: 4 pages, 3 figures. Phys. Rev. Lett., accepted for publicatio
Reflection of light and heavy holes from a linear potential barrier
In this paper we study reflection of holes in direct-band semiconductors from
the linear potential barrier. It is shown that light-heavy hole transformation
matrix is universal. It depends only on a dimensionless product of the light
hole longitudinal momentum and the characteristic length determined by the
slope of the potential and doesn't depend on the ratio of light and heavy hole
masses, provided this ratio is small. It is shown that the transformation
coefficient goes to zero both in the limit of small and large longitudinal
momenta, however the phase of a reflected hole is different in these limits. An
approximate analytical expression for the light-heavy hole transformation
coefficient is found.Comment: 6 pages, 2 figure
- …