21 research outputs found
A framework for the integration of green and lean six sigma for superior sustainability performance
Evidence suggests that Lean, Six Sigma and Green approaches make a positive contribution to the economic, social and environmental (i.e. sustainability) performance of organizations. However, evidence also suggests that organizations have found their integration and implementation challenging. The purpose of this research is therefore to present a framework that methodically guides companies through a five stages and sixteen steps process to effectively integrate and implement the Green, Lean and Six Sigma approaches to improve their sustainability performance. To achieve this, a critical review of the existing literature in the subject area was conducted to build a research gap, and subsequently develop the methodological framework proposed. The paper presents the results from the application of the proposed framework in four organizations with different sizes and operating in a diverse range of industries. The results showed that the integration of Lean Six Sigma and Green helped the organizations to averagely reduce their resources consumption from 20% to 40% and minimize the cost of energy and mass streams by 7-12%. The application of the framework should be gradual, the companies should assess their weaknesses and strengths, set priorities, and identify goals for successful implementation. This paper is one of the very first researches that presents a framework to integrate Green and Lean Six Sigma at a factory level, and hence offers the potential to be expanded to multiple factories or even supply chains
Competitive Inhibition of Heparinase by Persulfonated Glycosaminoglycans: A Tool to Detect Heparin Contamination
Heparin and the low molecular weight heparins are extensively used as medicinal products to prevent and treat the formation of venous and arterial thrombi. In early 2008, administration of some heparin lots was associated with the advent of severe adverse effects, indicative of an anaphylactoid-like response. Application of orthogonal analytical tools enabled detection and identification of the contaminant as oversulfated chondroitin sulfate (OSCS) was reported in our earlier report. Herein, we investigate whether enzymatic depolymerization using the bacterially derived heparinases, given the structural understanding of their substrate specificity, can be used to identify the presence of OSCS in heparin. We also extend this analysis to examine the effect of other persulfonated glycosaminoglycans (GAGs) on the action of the heparinases. We find that all persulfonated GAGs examined were effective inhibitors of heparinase I, with IC50 values ranging from approximately 0.5â2 ÎŒg/mL. Finally, using this biochemical understanding, we develop a rapid, simple assay to assess the purity of heparin using heparinase digestion followed by size-exclusion HPLC analysis to identify and quantify digestion products. In the context of the assay, we demonstrate that less than 0.1% (w/w) of OSCS (and other persulfonated polysaccharides) can routinely be detected in heparin