1,622 research outputs found

    Mode-sum regularization of the scalar self-force: Formulation in terms of a tetrad decomposition of the singular field

    Get PDF
    We examine the motion in Schwarzschild spacetime of a point particle endowed with a scalar charge. The particle produces a retarded scalar field which interacts with the particle and influences its motion via the action of a self-force. We exploit the spherical symmetry of the Schwarzschild spacetime and decompose the scalar field in spherical-harmonic modes. Although each mode is bounded at the position of the particle, a mode-sum evaluation of the self-force requires regularization because the sum does not converge: the retarded field is infinite at the position of the particle. The regularization procedure involves the computation of regularization parameters, which are obtained from a mode decomposition of the Detweiler-Whiting singular field; these are subtracted from the modes of the retarded field, and the result is a mode-sum that converges to the actual self-force. We present such a computation in this paper. There are two main aspects of our work that are new. First, we define the regularization parameters as scalar quantities by referring them to a tetrad decomposition of the singular field. Second, we calculate four sets of regularization parameters (denoted schematically by A, B, C, and D) instead of the usual three (A, B, and C). As proof of principle that our methods are reliable, we calculate the self-force acting on a scalar charge in circular motion around a Schwarzschild black hole, and compare our answers with those recorded in the literature.Comment: 38 pages, 2 figure

    Radiative falloff in black-hole spacetimes

    Full text link
    This two-part contribution to the Proceedings of the Eighth Canadian Conference on General Relativity and Relativistic Astrophysics is devoted to the evolution of a massless scalar field in two black-hole spacetimes which are not asymptotically flat. In Part I (authored by Eric Poisson) we consider the evolution of a scalar field propagating in Schwarzschild-de Sitter spacetime. The spacetime possesses a cosmological horizon in addition to the usual event horizon. The presence of this new horizon affects the late-time evolution of the scalar field. In part II (authored by William G. Laarakkers) we consider the evolution of a scalar field propagating in Schwarzschild-Einstein-de Sitter spacetime. The spacetime has two distinct regions: an inner black-hole region and an outer cosmological region. Early on in the evolution, the field behaves as if it were in pure Schwarzschild spacetime. Later, the field learns of the existence of the cosmological region and alters its behaviour.Comment: 5 pages, 7 figures, ReVTe

    Metric of a tidally distorted, nonrotating black hole

    Full text link
    The metric of a tidally distorted, nonrotating black hole is presented in a light-cone coordinate system that penetrates the event horizon and possesses a clear geometrical meaning. The metric is expressed as an expansion in powers of r/R << 1, where r is a measure of distance from the black hole and R is the local radius of curvature of the external spacetime; this is assumed to be much larger than M, the mass of the black hole. The metric is calculated up to a remainder of order (r/R)^4, and it depends on a family of tidal gravitational fields which characterize the hole's local environment. The coordinate system allows an easy identification of the event horizon, and expressions are derived for its surface gravity and the rates at which the tidal interaction transfers mass and angular momentum to the black hole.Comment: 4 pages. Final version, as it will appear in Physical Review Letter

    Gauge and Averaging in Gravitational Self-force

    Full text link
    A difficulty with previous treatments of the gravitational self-force is that an explicit formula for the force is available only in a particular gauge (Lorenz gauge), where the force in other gauges must be found through a transformation law once the Lorenz gauge force is known. For a class of gauges satisfying a ``parity condition'' ensuring that the Hamiltonian center of mass of the particle is well-defined, I show that the gravitational self-force is always given by the angle-average of the bare gravitational force. To derive this result I replace the computational strategy of previous work with a new approach, wherein the form of the force is first fixed up to a gauge-invariant piece by simple manipulations, and then that piece is determined by working in a gauge designed specifically to simplify the computation. This offers significant computational savings over the Lorenz gauge, since the Hadamard expansion is avoided entirely and the metric perturbation takes a very simple form. I also show that the rest mass of the particle does not evolve due to first-order self-force effects. Finally, I consider the ``mode sum regularization'' scheme for computing the self-force in black hole background spacetimes, and use the angle-average form of the force to show that the same mode-by-mode subtraction may be performed in all parity-regular gauges. It appears plausible that suitably modified versions of the Regge-Wheeler and radiation gauges (convenient to Schwarzschild and Kerr, respectively) are in this class

    Osculating orbits in Schwarzschild spacetime, with an application to extreme mass-ratio inspirals

    Full text link
    We present a method to integrate the equations of motion that govern bound, accelerated orbits in Schwarzschild spacetime. At each instant the true worldline is assumed to lie tangent to a reference geodesic, called an osculating orbit, such that the worldline evolves smoothly from one such geodesic to the next. Because a geodesic is uniquely identified by a set of constant orbital elements, the transition between osculating orbits corresponds to an evolution of the elements. In this paper we derive the evolution equations for a convenient set of orbital elements, assuming that the force acts only within the orbital plane; this is the only restriction that we impose on the formalism, and we do not assume that the force must be small. As an application of our method, we analyze the relative motion of two massive bodies, assuming that one body is much smaller than the other. Using the hybrid Schwarzschild/post-Newtonian equations of motion formulated by Kidder, Will, and Wiseman, we treat the unperturbed motion as geodesic in a Schwarzschild spacetime whose mass parameter is equal to the system's total mass. The force then consists of terms that depend on the system's reduced mass. We highlight the importance of conservative terms in this force, which cause significant long-term changes in the time-dependence and phase of the relative orbit. From our results we infer some general limitations of the radiative approximation to the gravitational self-force, which uses only the dissipative terms in the force.Comment: 18 pages, 6 figures, final version to be published in Physical Review

    On the fate of singularities and horizons in higher derivative gravity

    Get PDF
    We study static spherically symmetric solutions of high derivative gravity theories, with 4, 6, 8 and even 10 derivatives. Except for isolated points in the space of theories with more than 4 derivatives, only solutions that are nonsingular near the origin are found. But these solutions cannot smooth out the Schwarzschild singularity without the appearance of a second horizon. This conundrum, and the possibility of singularities at finite r, leads us to study numerical solutions of theories truncated at four derivatives. Rather than two horizons we are led to the suggestion that the original horizon is replaced by a rapid nonsingular transition from weak to strong gravity. We also consider this possibility for the de Sitter horizon.Comment: 15 pages, 3 figures, improvements and references added, to appear in PR

    A matched expansion approach to practical self-force calculations

    Full text link
    We discuss a practical method to compute the self-force on a particle moving through a curved spacetime. This method involves two expansions to calculate the self-force, one arising from the particle's immediate past and the other from the more distant past. The expansion in the immediate past is a covariant Taylor series and can be carried out for all geometries. The more distant expansion is a mode sum, and may be carried out in those cases where the wave equation for the field mediating the self-force admits a mode expansion of the solution. In particular, this method can be used to calculate the gravitational self-force for a particle of mass mu orbiting a black hole of mass M to order mu^2, provided mu/M << 1. We discuss how to use these two expansions to construct a full self-force, and in particular investigate criteria for matching the two expansions. As with all methods of computing self-forces for particles moving in black hole spacetimes, one encounters considerable technical difficulty in applying this method; nevertheless, it appears that the convergence of each series is good enough that a practical implementation may be plausible.Comment: IOP style, 8 eps figures, accepted for publication in a special issue of Classical and Quantum Gravit

    Quadrupole moments of rotating neutron stars

    Full text link
    Numerical models of rotating neutron stars are constructed for four equations of state using the computer code RNS written by Stergioulas. For five selected values of the star's gravitational mass (in the interval between 1.0 and 1.8 solar masses) and for each equation of state, the star's angular momentum is varied from J=0 to the Keplerian limit J=J_{max}. For each neutron-star configuration we compute Q, the quadrupole moment of the mass distribution. We show that for given values of M and J, |Q| increases with the stiffness of the equation of state. For fixed mass and equation of state, the dependence on J is well reproduced with a simple quadratic fit, Q \simeq - aJ^2/M c^2, where c is the speed of light, and a is a parameter of order unity depending on the mass and the equation of state.Comment: ReVTeX, 7 pages, 5 figures, additional material, and references adde
    corecore