37 research outputs found

    Nonlocal effects in the shot noise of diffusive superconductor - normal-metal systems

    Full text link
    A cross-shaped diffusive system with two superconducting and two normal electrodes is considered. A voltage eV<ΔeV < \Delta is applied between the normal leads. Even in the absence of average current through the superconducting electrodes their presence increases the shot noise at the normal electrodes and doubles it in the case of a strong coupling to the superconductors. The nonequilibrium noise at the superconducting electrodes remains finite even in the case of a vanishingly small transport current due to the absence of energy transfer into the superconductors. This noise is suppressed by electron-electron scattering at sufficiently high voltages.Comment: 4 pages, RevTeX, 2 eps figure

    LES of Unstable Combustion in a Gas Turbine Combustor

    No full text

    Simulation of reacting flows with a portable parallel code using dynamic load balancing

    No full text

    Active instability suppression by controlled injection of liquid fuel

    No full text

    Towards Adaptive Closed-Loop Control of Transonic Cavity Flows

    No full text

    Large-eddy simulations for tundish and airfoil flows

    No full text

    Triangulation in research, with examples

    Get PDF
    In devices where air and fuel are injected separately, combustion processes are influenced by oscillations of the air flow rate but may also be sensitive to fluctuations of the fuel flow rate entering the chamber. This paper describes a joint experimental and numerical study of the mechanisms controlling the response of a swirled complex-geometry combustor burning natural gas and air. The flow is first characterized without combustion and LDV results are compared to large eddy simulation (LES) data. The nonpulsated reacting regime is then studied and characterized in terms of the heat release field. Finally the fuel flow rate is pulsated at several amplitudes and the response of the chamber is analyzed using phase-locked averaging and acoustic analysis. Results show that LES and acoustic analysis predict the flame dynamics in this complex configuration with accuracy when heat losses (radiation and convection) are accounted for
    corecore