691 research outputs found
Is the magnetic field in the heliosheath laminar or a turbulent bath of bubbles?
All the current global models of the heliosphere are based on the assumption
that the magnetic field in the heliosheath, in the region close to the
heliopause is laminar. We argue that in that region the heliospheric magnetic
field is not laminar but instead consists of magnetic bubbles. Recently, we
proposed that the annihilation of the "sectored" magnetic field within the
heliosheath as it is compressed on its approach to the heliopause produces the
anomalous cosmic rays and also energetic electrons. As a product of the
annihilation of the sectored magnetic field, densely-packed magnetic
islands/bubbles are produced. These magnetic islands/bubbles will be convected
with the ambient flows as the sector region is carried to higher latitudes
filling the heliosheath. We further argue that the magnetic islands/bubbles
will develop upstream within the heliosheath. As a result, the magnetic field
in the heliosheath sector region will be disordered well upstream of the
heliopause. We present a 3D MHD simulation with very high numerical resolution
that captures the north-south boundaries of the sector region. We show that due
to the high pressure of the interstellar magnetic field a north-south asymmetry
develops such that the disordered sectored region fills a large portion of the
northern part of the heliosphere with a smaller extension in the southern
hemisphere. We suggest that this scenario is supported by the following changes
that occur around 2008 and from 2009.16 onward: a) the sudden decrease in the
intensity of low energy electrons detected by Voyager 2; b) a sharp reduction
in the intensity of fluctuations of the radial flow; and c) the dramatic
differences in intensity trends between GCRs at V1 and 2. We argue that these
observations are a consequence of V2 leaving the sector region of disordered
field during these periods and crossing into a region of unipolar laminar
field.Comment: 36 pages, 15 figures, submitted to Ap
Star Unfolding Convex Polyhedra via Quasigeodesic Loops
We extend the notion of star unfolding to be based on a quasigeodesic loop Q
rather than on a point. This gives a new general method to unfold the surface
of any convex polyhedron P to a simple (non-overlapping), planar polygon: cut
along one shortest path from each vertex of P to Q, and cut all but one segment
of Q.Comment: 10 pages, 7 figures. v2 improves the description of cut locus, and
adds references. v3 improves two figures and their captions. New version v4
offers a completely different proof of non-overlap in the quasigeodesic loop
case, and contains several other substantive improvements. This version is 23
pages long, with 15 figure
Ensemble simulations of the 12 July 2012 Coronal Mass Ejection with the Constant Turn Flux Rope Model
Flux-rope-based magnetohydrodynamic modeling of coronal mass ejections (CMEs)
is a promising tool for the prediction of the CME arrival time and magnetic
field at Earth. In this work, we introduce a constant-turn flux rope model and
use it to simulate the 12-July-2012 16:48 CME in the inner heliosphere. We
constrain the initial parameters of this CME using the graduated cylindrical
shell (GCS) model and the reconnected flux in post-eruption arcades. We
correctly reproduce all the magnetic field components of the CME at Earth, with
an arrival time error of approximately 1 hour. We further estimate the average
subjective uncertainties in the GCS fittings, by comparing the GCS parameters
of 56 CMEs reported in multiple studies and catalogs. We determined that the
GCS estimates of the CME latitude, longitude, tilt, and speed have average
uncertainties of 5.74 degrees, 11.23 degrees, 24.71 degrees, and 11.4%
respectively. Using these, we have created 77 ensemble members for the
12-July-2012 CME. We found that 55% of our ensemble members correctly reproduce
the sign of the magnetic field components at Earth. We also determined that the
uncertainties in GCS fitting can widen the CME arrival time prediction window
to about 12 hours for the 12-July-2012 CME. On investigating the forecast
accuracy introduced by the uncertainties in individual GCS parameters, we
conclude that the half-angle and aspect ratio have little impact on the
predicted magnetic field of the 12-July-2012 CME, whereas the uncertainties in
longitude and tilt can introduce a relatively large spread in the magnetic
field predicted at Earth
Exclusion of Tiny Interstellar Dust Grains from the Heliosphere
The distribution of interstellar dust grains (ISDG) observed in the Solar
System depends on the nature of the interstellar medium-solar wind interaction.
The charge of the grains couples them to the interstellar magnetic field (ISMF)
resulting in some fraction of grains being excluded from the heliosphere while
grains on the larger end of the size distribution, with gyroradii comparable to
the size of the heliosphere, penetrate the termination shock. This results in a
skewing the size distribution detected in the Solar System.
We present new calculations of grain trajectories and the resultant grain
density distribution for small ISDGs propagating through the heliosphere. We
make use of detailed heliosphere model results, using three-dimensional (3-D)
magnetohydrodynamic/kinetic models designed to match data on the shape of the
termination shock and the relative deflection of interstellar neutral H and He
flowing into the heliosphere. We find that the necessary inclination of the
ISMF relative to the inflow direction results in an asymmetry in the
distribution of the larger grains (0.1 micron) that penetrate the heliopause.
Smaller grains (0.01 micron) are completely excluded from the Solar System at
the heliopause.Comment: 5 pages, 5 figures, accepted for publication in the Solar Wind 12
conference proceeding
Mass Transfer Mechanism in Real Crystals by Pulsed Laser Irradiation
The dynamic processes in the surface layers of metals subjected activity of a
pulsing laser irradiation, which destroyed not the crystalline structure in
details surveyed. The procedure of calculation of a dislocation density
generated in bulk of metal during the relaxation processes and at repeated
pulse laser action is presented. The results of evaluations coincide with high
accuracy with transmission electron microscopy dates. The
dislocation-interstitial mechanism of laser-stimulated mass-transfer in real
crystals is presented on the basis of the ideas of the interaction of structure
defects in dynamically deforming medium. The good compliance of theoretical and
experimental results approves a defining role of the presented mechanism of
mass transfer at pulse laser action on metals. The possible implementation this
dislocation-interstitial mechanism of mass transfer in metals to other cases of
pulsing influences is justifiedComment: 10 pages, 2 figures, Late
Origin of four-fold anisotropy in square lattices of circular ferromagnetic dots
We discuss the four-fold anisotropy of in-plane ferromagnetic resonance (FMR)
field , found in a square lattice of circular Permalloy dots when the
interdot distance gets comparable to the dot diameter . The minimum
, along the lattice axes,
differ by 50 Oe at = 1.1. This anisotropy, not expected in
uniformly magnetized dots, is explained by a non-uniform magnetization
\bm(\br) in a dot in response to dipolar forces in the patterned magnetic
structure. It is well described by an iterative solution of a continuous
variational procedure.Comment: 4 pages, 3 figures, revtex, details of analytic calculation and new
references are adde
Behavior of Fermi Systems Approaching Fermion Condensation Quantum Phase Transition from Disordered Phase
The behavior of Fermi systems which approach the fermion condensation quantum
phase transition (FCQPT) from the disordered phase is considered. We show that
the quasiparticle effective mass diverges as
where is the system density and is the critical point at which
FCQPT occurs. Such a behavior is of general form and takes place in both three
dimensional (3D) systems and two dimensional (2D) ones. Since the effective
mass is finite, the system exhibits the Landau Fermi liquid behavior. At
, the behavior can be viewed as a highly correlated
one, because the effective mass is large and strongly depends on the density.
In case of electronic systems the Wiedemann-Franz law is held and
Kadowaki-Woods ratio is preserved. Beyond the region ,
the effective mass is approximately constant and the system becomes
conventional Landau Fermi liquid.Comment: 9 pages, revtex, no figure
Hall coefficient in heavy fermion metals
Experimental studies of the antiferromagnetic (AF) heavy fermion metal in a magnetic field indicate the presence of a jump in the Hall
coefficient at a magnetic-field tuned quantum state in the zero temperature
limit. This quantum state occurs at and induces the jump even
though the change of the magnetic field at is infinitesimal. We
investigate this by using the model of heavy electron liquid with the fermion
condensate. Within this model the jump takes place when the magnetic field
reaches the critical value at which the ordering temperature
of the AF transition vanishes. We show that at ,
this second order AF phase transition becomes the first order one, making the
corresponding quantum and thermal critical fluctuations vanish at the jump. At
and , the Gr\"uneisen ratio as a function of temperature
diverges. We demonstrate that both the divergence and the jump are determined
by the specific low temperature behavior of the entropy with , and are temperature independent
constants.Comment: 5 pages, 2 figure
- …