691 research outputs found

    Is the magnetic field in the heliosheath laminar or a turbulent bath of bubbles?

    Full text link
    All the current global models of the heliosphere are based on the assumption that the magnetic field in the heliosheath, in the region close to the heliopause is laminar. We argue that in that region the heliospheric magnetic field is not laminar but instead consists of magnetic bubbles. Recently, we proposed that the annihilation of the "sectored" magnetic field within the heliosheath as it is compressed on its approach to the heliopause produces the anomalous cosmic rays and also energetic electrons. As a product of the annihilation of the sectored magnetic field, densely-packed magnetic islands/bubbles are produced. These magnetic islands/bubbles will be convected with the ambient flows as the sector region is carried to higher latitudes filling the heliosheath. We further argue that the magnetic islands/bubbles will develop upstream within the heliosheath. As a result, the magnetic field in the heliosheath sector region will be disordered well upstream of the heliopause. We present a 3D MHD simulation with very high numerical resolution that captures the north-south boundaries of the sector region. We show that due to the high pressure of the interstellar magnetic field a north-south asymmetry develops such that the disordered sectored region fills a large portion of the northern part of the heliosphere with a smaller extension in the southern hemisphere. We suggest that this scenario is supported by the following changes that occur around 2008 and from 2009.16 onward: a) the sudden decrease in the intensity of low energy electrons detected by Voyager 2; b) a sharp reduction in the intensity of fluctuations of the radial flow; and c) the dramatic differences in intensity trends between GCRs at V1 and 2. We argue that these observations are a consequence of V2 leaving the sector region of disordered field during these periods and crossing into a region of unipolar laminar field.Comment: 36 pages, 15 figures, submitted to Ap

    Star Unfolding Convex Polyhedra via Quasigeodesic Loops

    Get PDF
    We extend the notion of star unfolding to be based on a quasigeodesic loop Q rather than on a point. This gives a new general method to unfold the surface of any convex polyhedron P to a simple (non-overlapping), planar polygon: cut along one shortest path from each vertex of P to Q, and cut all but one segment of Q.Comment: 10 pages, 7 figures. v2 improves the description of cut locus, and adds references. v3 improves two figures and their captions. New version v4 offers a completely different proof of non-overlap in the quasigeodesic loop case, and contains several other substantive improvements. This version is 23 pages long, with 15 figure

    Ensemble simulations of the 12 July 2012 Coronal Mass Ejection with the Constant Turn Flux Rope Model

    Full text link
    Flux-rope-based magnetohydrodynamic modeling of coronal mass ejections (CMEs) is a promising tool for the prediction of the CME arrival time and magnetic field at Earth. In this work, we introduce a constant-turn flux rope model and use it to simulate the 12-July-2012 16:48 CME in the inner heliosphere. We constrain the initial parameters of this CME using the graduated cylindrical shell (GCS) model and the reconnected flux in post-eruption arcades. We correctly reproduce all the magnetic field components of the CME at Earth, with an arrival time error of approximately 1 hour. We further estimate the average subjective uncertainties in the GCS fittings, by comparing the GCS parameters of 56 CMEs reported in multiple studies and catalogs. We determined that the GCS estimates of the CME latitude, longitude, tilt, and speed have average uncertainties of 5.74 degrees, 11.23 degrees, 24.71 degrees, and 11.4% respectively. Using these, we have created 77 ensemble members for the 12-July-2012 CME. We found that 55% of our ensemble members correctly reproduce the sign of the magnetic field components at Earth. We also determined that the uncertainties in GCS fitting can widen the CME arrival time prediction window to about 12 hours for the 12-July-2012 CME. On investigating the forecast accuracy introduced by the uncertainties in individual GCS parameters, we conclude that the half-angle and aspect ratio have little impact on the predicted magnetic field of the 12-July-2012 CME, whereas the uncertainties in longitude and tilt can introduce a relatively large spread in the magnetic field predicted at Earth

    Exclusion of Tiny Interstellar Dust Grains from the Heliosphere

    Get PDF
    The distribution of interstellar dust grains (ISDG) observed in the Solar System depends on the nature of the interstellar medium-solar wind interaction. The charge of the grains couples them to the interstellar magnetic field (ISMF) resulting in some fraction of grains being excluded from the heliosphere while grains on the larger end of the size distribution, with gyroradii comparable to the size of the heliosphere, penetrate the termination shock. This results in a skewing the size distribution detected in the Solar System. We present new calculations of grain trajectories and the resultant grain density distribution for small ISDGs propagating through the heliosphere. We make use of detailed heliosphere model results, using three-dimensional (3-D) magnetohydrodynamic/kinetic models designed to match data on the shape of the termination shock and the relative deflection of interstellar neutral H and He flowing into the heliosphere. We find that the necessary inclination of the ISMF relative to the inflow direction results in an asymmetry in the distribution of the larger grains (0.1 micron) that penetrate the heliopause. Smaller grains (0.01 micron) are completely excluded from the Solar System at the heliopause.Comment: 5 pages, 5 figures, accepted for publication in the Solar Wind 12 conference proceeding

    Mass Transfer Mechanism in Real Crystals by Pulsed Laser Irradiation

    Full text link
    The dynamic processes in the surface layers of metals subjected activity of a pulsing laser irradiation, which destroyed not the crystalline structure in details surveyed. The procedure of calculation of a dislocation density generated in bulk of metal during the relaxation processes and at repeated pulse laser action is presented. The results of evaluations coincide with high accuracy with transmission electron microscopy dates. The dislocation-interstitial mechanism of laser-stimulated mass-transfer in real crystals is presented on the basis of the ideas of the interaction of structure defects in dynamically deforming medium. The good compliance of theoretical and experimental results approves a defining role of the presented mechanism of mass transfer at pulse laser action on metals. The possible implementation this dislocation-interstitial mechanism of mass transfer in metals to other cases of pulsing influences is justifiedComment: 10 pages, 2 figures, Late

    Origin of four-fold anisotropy in square lattices of circular ferromagnetic dots

    Full text link
    We discuss the four-fold anisotropy of in-plane ferromagnetic resonance (FMR) field HrH_r, found in a square lattice of circular Permalloy dots when the interdot distance aa gets comparable to the dot diameter dd. The minimum HrH_r, along the lattice axes,andthemaximum,alongthe axes, and the maximum, along the axes, differ by \sim 50 Oe at a/da/d = 1.1. This anisotropy, not expected in uniformly magnetized dots, is explained by a non-uniform magnetization \bm(\br) in a dot in response to dipolar forces in the patterned magnetic structure. It is well described by an iterative solution of a continuous variational procedure.Comment: 4 pages, 3 figures, revtex, details of analytic calculation and new references are adde

    Behavior of Fermi Systems Approaching Fermion Condensation Quantum Phase Transition from Disordered Phase

    Full text link
    The behavior of Fermi systems which approach the fermion condensation quantum phase transition (FCQPT) from the disordered phase is considered. We show that the quasiparticle effective mass MM^* diverges as M1/xxFCM^*\propto 1/|x-x_{FC}| where xx is the system density and xFCx_{FC} is the critical point at which FCQPT occurs. Such a behavior is of general form and takes place in both three dimensional (3D) systems and two dimensional (2D) ones. Since the effective mass MM^* is finite, the system exhibits the Landau Fermi liquid behavior. At xxFC/xFC1|x-x_{FC}|/x_{FC}\ll 1, the behavior can be viewed as a highly correlated one, because the effective mass is large and strongly depends on the density. In case of electronic systems the Wiedemann-Franz law is held and Kadowaki-Woods ratio is preserved. Beyond the region xxFC/xFC1|x-x_{FC}|/x_{FC}\ll 1, the effective mass is approximately constant and the system becomes conventional Landau Fermi liquid.Comment: 9 pages, revtex, no figure

    Hall coefficient in heavy fermion metals

    Full text link
    Experimental studies of the antiferromagnetic (AF) heavy fermion metal YbRh2Si2\rm YbRh_2Si_2 in a magnetic field BB indicate the presence of a jump in the Hall coefficient at a magnetic-field tuned quantum state in the zero temperature limit. This quantum state occurs at BBc0B\geq B_{c0} and induces the jump even though the change of the magnetic field at B=Bc0B=B_{c0} is infinitesimal. We investigate this by using the model of heavy electron liquid with the fermion condensate. Within this model the jump takes place when the magnetic field reaches the critical value Bc0B_{c0} at which the ordering temperature TN(B=Bc0)T_N(B=B_{c0}) of the AF transition vanishes. We show that at BBc0B\to B_{c0}, this second order AF phase transition becomes the first order one, making the corresponding quantum and thermal critical fluctuations vanish at the jump. At T0T\to0 and B=Bc0B=B_{c0}, the Gr\"uneisen ratio as a function of temperature TT diverges. We demonstrate that both the divergence and the jump are determined by the specific low temperature behavior of the entropy S(T)S0+aT+bTS(T)\propto S_0+a\sqrt{T}+bT with S0S_0, aa and bb are temperature independent constants.Comment: 5 pages, 2 figure
    corecore