49 research outputs found

    Recombinant Expression and Characterization of Human and Murine ACE2: Species-Specific Activation of the Alternative Renin-Angiotensin-System

    Get PDF
    Angiotensin-converting enzyme 2 (ACE2) is a monocarboxypeptidase of the renin-angiotensin-system (RAS) which is known to cleave several substrates among vasoactive peptides. Its preferred substrate is Angiotensin II, which is tightly involved in the regulation of important physiological functions including fluid homeostasis and blood pressure. Ang 1–7, the main enzymatic product of ACE2, became increasingly important in the literature in recent years, as it was reported to counteract hypertensive and fibrotic actions of Angiotensin II via the MAS receptor. The functional connection of ACE2, Ang 1–7, and the MAS receptor is also referred to as the alternative axis of the RAS. In the present paper, we describe the recombinant expression and purification of human and murine ACE2 (rhACE2 and rmACE2). Furthermore, we determined the conversion rates of rhACE2 and rmACE2 for different natural peptide substrates in plasma samples and discovered species-specific differences in substrate specificities, probably leading to functional differences in the alternative axis of the RAS. In particular, conversion rates of Ang 1–10 to Ang 1–9 were found to be substantially different when applying rhACE2 or rmACE2 in vitro. In contrast to rhACE2, rm ACE2 is substantially less potent in transformation of Ang 1–10 to Ang 1–9

    Urotensin II Exerts Pressor Effects by Stimulating Renin and Aldosterone Synthase Gene Expression

    Get PDF
    Abstract We investigated the in vivo pressor effects of the potent vasoconstrictor Urotensin II (UII). We randomized normotensive Sprague-Dawley rats into 4 groups that received a 7-day UII infusion (cases) or vehicle (controls). Group 1 received normal sodium intake; Group 2 underwent unilateral nephrectomy and salt loading; Group 3 received spironolactone, besides unilateral nephrectomy and salt loading; Group 4 only received spironolactone. UII raised BP transiently after a lag phase of 12-36 hours in Group 1, and progressively over the week in Group 2. Spironolactone did not affect blood pressure, but abolished both pressor effects of UII in Group 3, and left blood pressure unaffected in Group 4. UII increased by 7-fold the renal expression of renin in Group 2, increased aldosterone synthase expression in the adrenocortical zona glomerulosa, and prevented the blunting of renin expression induced by high salt. UII raises BP transiently when sodium intake and renal function are normal, but progressively in salt-loaded uninephrectomized rats. Moreover, it increases aldosterone synthase and counteracts the suppression of renin induced by salt loading. This novel action of UII in the regulation of renin and aldosterone synthesis could play a role in several clinical conditions where UII levels are up-regulated

    Novel therapeutic approaches targeting the renin angiotensin system and associated peptides in hypertension and heart failure

    Get PDF
    Despite the success of renin-angiotensin system (RAS) blockade by angiotensin-converting enzyme (ACE) inhibitors and angiotensin II type 1 receptor (AT1R) blockers, current therapies for hypertension and related cardiovascular diseases are still inadequate. Identification of additional components of the RAS and associated vasoactive pathways, as well as new structural and functional insights into established targets, have led to novel therapeutic approaches with the potential to provide improved cardiovascular protection and better blood pressure control and/or reduced adverse side effects. The simultaneous modulation of several neurohumoral mediators in key interconnected blood pressure–regulating pathways has been an attractive approach to improve treatment efficacy, and several novel approaches involve combination therapy or dual-acting agents. In addition, increased understanding of the complexity of the RAS has led to novel approaches aimed at upregulating the ACE2/angiotensin-(1-7)/Mas axis to counter-regulate the harmful effects of the ACE/angiotensin II/angiotensin III/AT1R axis. These advances have opened new avenues for the development of novel drugs targeting the RAS to better treat hypertension and heart failure. Here we focus on new therapies in preclinical and early clinical stages of development, including novel small molecule inhibitors and receptor agonists/antagonists, less conventional strategies such as gene therapy to suppress angiotensinogen at the RNA level, recombinant ACE2 protein, and novel bispecific designer peptides

    Influence of Antihypertensive Treatment on RAAS Peptides in Newly Diagnosed Hypertensive Patients.

    Get PDF
    (1) Background: Recently, influences of antihypertensive treatment on the renin-angiotensin-aldosterone system (RAAS) has gained attention, regarding a possible influence on inflammatory and anti-inflammatory pathways. We aimed to study the effects of newly initiated antihypertensive drugs on angiotensin (Ang) II and Ang (1-7) as representers of two counter-regulatory axes. (2) Methods: In this randomized, open-label trial investigating RAAS peptides after the initiation of perindopril, olmesartan, amlodipine, or hydrochlorothiazide, Ang II and Ang (1-7) equilibrium concentrations were measured at 8 a.m. and 12 a.m. at baseline and after four weeks of treatment. Eighty patients were randomized (1:1:1:1 fashion). (3) Results: Between the four substances, we found significant differences regarding the concentrations of Ang II (p < 0.0005 for 8 a.m., 12 a.m.) and Ang (1-7) (p = 0.019 for 8 a.m., <0.0005 for 12 a.m.) four weeks after treatment start. Ang II was decreased by perindopril (p = 0.002), and increased by olmesartan (p < 0.0005), amlodipine (p = 0.012), and hydrochlorothiazide (p = 0.001). Ang (1-7) was increased by perindopril and olmesartan (p = 0.008/0.002), but not measurably altered by amlodipine and hydrochlorothiazide (p = 0.317/ 0.109). (4) Conclusion: The initiation of all first line antihypertensive treatments causes early and distinct alterations of equilibrium angiotensin levels. Given the additional AT1R blocking action of olmesartan, RAAS peptides shift upon initiation of perindopril and olmesartan appear to work in favor of the anti-inflammatory axis compared to amlodipine and hydrochlorothiazide

    Vitamin D depletion aggravates hypertension and target-organ damage

    Get PDF
    BACKGROUND: We tested the controversial hypothesis that vitamin D depletion aggravates hypertension and target-organ damage by influencing renin. METHODS AND RESULTS: Four-week-old double-transgenic rats (dTGR) with excess angiotensin (Ang) II production due to overexpression of the human renin (hREN) and angiotensinogen (hAGT) genes received vitamin D-depleted (n=18) or standard chow (n=15) for 3 weeks. The depleted group had very low serum 25-hydroxyvitamin D levels (mean+/-SEM; 3.8+/-0.29 versus 40.6+/-1.19 nmol/L) and had higher mean systolic BP at week 5 (158+/-3.5 versus 134.6+/-3.7 mm Hg, P<0.001), week 6 (176.6+/-3.3 versus 162.3+/-3.8 mm Hg, P<0.01), and week 7 (171.6+/-5.1 versus 155.9+/-4.3 mm Hg, P<0.05). Vitamin D depletion led to increased relative heart weights and increased serum creatinine concentrations. Furthermore, the mRNAs of natriuretic peptides, neutrophil gelatinase-associated lipocalin, hREN, and rRen were increased by vitamin D depletion. Regulatory T cells in the spleen and in the circulation were not affected. Ang metabolites, including Ang II and the counter-regulatory breakdown product Ang 1 to 7, were significantly up-regulated in the vitamin D-depleted groups, while ACE-1 and ACE-2 activities were not affected. CONCLUSIONS: Short-term severe vitamin D depletion aggravated hypertension and target-organ damage in dTGR. Our data suggest that even short-term severe vitamin D deficiency may directly promote hypertension and impacts on renin-angiotensin system components that could contribute to target-organ damage. The findings add to the evidence that vitamin D deficiency could also affect human hypertension

    Retinoic acid receptor α as a novel contributor to adrenal cortex structure and function through interactions with Wnt and Vegfa signalling

    Get PDF
    International audiencePrimary aldosteronism (PA) is the most frequent form of secondary arterial hypertension. Mutations in different genes increase aldosterone production in PA, but additional mechanisms may contribute to increased cell proliferation and aldosterone producing adenoma (APA) development. We performed transcriptome analysis in APA and identified retinoic acid receptor alpha (RARα) signaling as a central molecular network involved in nodule formation. To understand how RARα modulates adrenal structure and function, we explored the adrenal phenotype of male and female Rarα knockout mice. inactivation of Rarα in mice led to significant structural disorganization of the adrenal cortex in both sexes, with increased adrenal cortex size in female mice and increased cell proliferation in males. Abnormalities of vessel architecture and extracellular matrix were due to decreased Vegfa expression and modifications in extracellular matrix components. On the molecular level, Rarα inactivation leads to inhibition of non-canonical Wnt signaling, without affecting the canonical Wnt pathway nor PKA signaling. Our study suggests that Rarα contributes to the maintenance of normal adrenal cortex structure and cell proliferation, by modulating Wnt signaling. Dysregulation of this interaction may contribute to abnormal cell proliferation, creating a propitious environment for the emergence of specific driver mutations in PA. Primary aldosteronism (PA) is the most common and curable form of secondary arterial hypertension, with prevalence estimations of up to 10% of cases in referred hypertensive patients, 4% of patients in primary care 1,2 and 20% of patients with resistant hypertension 3,4. Rapid diagnosis and treatment are important to prevent severe cardiovas-cular consequences of long term aldosterone exposure, which are independent of blood pressure levels and are du

    Profiling endogenous adrenal function during veno-venous ECMO support in COVID-19 ARDS: a descriptive analysis

    Get PDF
    BackgroundProlonged critical illness is often accompanied by an impairment of adrenal function, which has been frequently related to conditions complicating patient management. The presumed connection between hypoxia and the pathogenesis of this critical- illness- related corticosteroid insufficiency (CIRCI) might play an important role in patients with severe acute respiratory distress syndrome (ARDS). Since extracorporeal membrane oxygenation (ECMO) is frequently used in ARDS, but data on CIRCI during this condition are scarce, this study reports the behaviour of adrenal function parameters during oxygenation support with veno-venous (vv)ECMO in coronavirus disease 2019 (COVID-19) ARDS.MethodsA total of 11 patients undergoing vvECMO due to COVID-19 ARDS at the Medical University of Vienna, who received no concurrent corticosteroid therapy, were retrospectively included in this study. We analysed the concentrations of cortisol, aldosterone, and angiotensin (Ang) metabolites (Ang I–IV, Ang 1–7, and Ang 1–5) in serum via liquid chromatography/tandem mass spectrometry before, after 1 day, 1 week, and 2 weeks during vvECMO support and conducted correlation analyses between cortisol and parameters of disease severity.ResultsCortisol concentrations appeared to be lowest after initiation of ECMO and progressively increased throughout the study period. Higher concentrations were related to disease severity and correlated markedly with interleukin-6, procalcitonin, pH, base excess, and albumin during the first day of ECMO. Fair correlations during the first day could be observed with calcium, duration of critical illness, and ECMO gas flow. Angiotensin metabolite concentrations were available in a subset of patients and indicated a more homogenous aldosterone response to plasma renin activity after 1 week of ECMO support.ConclusionOxygenation support through vvECMO may lead to a partial recovery of adrenal function over time. In homogenous patient collectives, this novel approach might help to further determine the importance of adrenal stress response in ECMO and the influence of oxygenation support on CIRCI

    Cluster analysis of angiotensin biomarkers to identify antihypertensive drug treatment in population studies

    Get PDF
    Background: The recent progress in molecular biology generates an increasing interest in investigating molecular biomarkers as markers of response to treatments. The present work is motivated by a study, where the objective was to explore the potential of the molecular biomarkers of renin-angiotensin-aldosterone system (RAAS) to identify the undertaken antihypertensive treatments in the general population. Population-based studies offer an opportunity to assess the effectiveness of treatments in real-world scenarios. However, lack of quality documentation, especially when electronic health record linkage is unavailable, leads to inaccurate reporting and classification bias. Method: We present a machine learning clustering technique to determine the potential of measured RAAS biomarkers for the identification of undertaken treatments in the general population. The biomarkers were simultaneously determined through a novel mass-spectrometry analysis in 800 participants of the Cooperative Health Research In South Tyrol (CHRIS) study with documented antihypertensive treatments. We assessed the agreement, sensitivity and specificity of the resulting clusters against known treatment types. Through the lasso penalized regression, we identified clinical characteristics associated with the biomarkers, accounting for the effects of cluster and treatment classifications. Results: We identified three well-separated clusters: cluster 1 (n = 444) preferentially including individuals not receiving RAAS-targeting drugs; cluster 2 (n = 235) identifying angiotensin type 1 receptor blockers (ARB) users (weighted kappa κw = 74%; sensitivity = 73%; specificity = 83%); and cluster 3 (n = 121) well discriminating angiotensin-converting enzyme inhibitors (ACEi) users (κw = 81%; sensitivity = 55%; specificity = 90%). Individuals in clusters 2 and 3 had higher frequency of diabetes as well as higher fasting glucose and BMI levels. Age, sex and kidney function were strong predictors of the RAAS biomarkers independently of the cluster structure. Conclusions: Unsupervised clustering of angiotensin-based biomarkers is a viable technique to identify individuals on specific antihypertensive treatments, pointing to a potential application of the biomarkers as useful clinical diagnostic tools even outside of a controlled clinical setting
    corecore