21 research outputs found
Wideband digital phase comparator for high current shunts
A wideband phase comparator for precise measurements of phase difference of
high current shunts has been developed at INRIM. The two-input digital phase
detector is realized with a precision wideband digitizer connected through a
pair of symmetric active guarded transformers to the outputs of the shunts
under comparison. Data are first acquired asynchronously, and then transferred
from on-board memory to host memory. Because of the large amount of data
collected the filtering process and the analysis algorithms are performed
outside the acquisition routine. Most of the systematic errors can be
compensated by a proper inversion procedure.
The system is suitable for comparing shunts in a wide range of currents, from
several hundred of milliampere up to 100 A, and frequencies ranging between 500
Hz and 100 kHz. Expanded uncertainty (k=2) less than 0.05 mrad, for frequency
up to 100 kHz, is obtained in the measurement of the phase difference of a
group of 10 A shunts, provided by some European NMIs, using a digitizer with
sampling frequency up to 1 MHz. An enhanced version of the phase comparator
employs a new digital phase detector with higher sampling frequency and
vertical resolution. This permits to decrease the contribution to the
uncertainty budget of the phase detector of a factor two from 20 kHz to 100
kHz. Theories and experiments show that the phase difference between two high
precision wideband digitizers, coupled as phase detector, depends on multiple
factors derived from both analog and digital imprint of each sampling system.Comment: 20 pages, 9 figure
Asynchronous Phase Comparator for Characterization of Devices for PMUs Calibrator
This paper reports recent progress in developing a new asynchronous digital phase comparator for the precision measurement of phase difference of voltage ratio devices and calibration of functional elements of phasor measurement units (PMUs) calibrator. The phase error of the proposed digital comparator is below 300 nrad at 50 Hz and 100 μrad at 100 kHz with applied voltages ranging between 500 mV and 3 V, whereas the phase error of cables and connectors was estimated to be 4 μrad at 1 MHz. Besides resistive dividers, the phase comparator has been employed for the characterization of frequency behavior of phase difference between the output and input of voltage and transconductance amplifiers for a PMUs calibrator. The system can also be an important tool for phase-frequency characterization of devices employed for specific wideband power measurements
Realization of the farad from the dc quantum Hall effect with digitally-assisted impedance bridges
A new traceability chain for the derivation of the farad from dc quantum Hall
effect has been implemented at INRIM. Main components of the chain are two new
coaxial transformer bridges: a resistance ratio bridge, and a quadrature
bridge, both operating at 1541 Hz. The bridges are energized and controlled
with a polyphase direct-digital-synthesizer, which permits to achieve both main
and auxiliary equilibria in an automated way; the bridges and do not include
any variable inductive divider or variable impedance box. The relative
uncertainty in the realization of the farad, at the level of 1000 pF, is
estimated to be 64E-9. A first verification of the realization is given by a
comparison with the maintained national capacitance standard, where an
agreement between measurements within their relative combined uncertainty of
420E-9 is obtained.Comment: 15 pages, 11 figures, 3 table