134 research outputs found

    Perturbation theory in radial quantization approach and the expectation values of exponential fields in sine-Gordon model

    Get PDF
    A perturbation theory for Massive Thirring Model (MTM) in radial quantization approach is developed. Investigation of the twisted sector in this theory allows us to calculate the vacuum expectation values of exponential fields expiaphi(0) exp iaphi (0) of the sine-Gordon theory in first order over Massive Thirring Models coupling constant. It appears that the apparent difficulty in radial quantization of massive theories, namely the explicite ''time'' dependence of the Hamiltonian, may be successfully overcome. The result we have obtained agrees with the exact formula conjectured by Lukyanov and Zamolodchikov and coincides with the analogous calculations recently carried out in dual angular quantization approach by one of the authors.Comment: 16 pages, no figures, LaTe

    The Seiberg-Witten prepotential and the Euler class of the reduced moduli space of instantons

    Get PDF
    The n-instanton contribution to the Seiberg-Witten prepotential of N=2 supersymmetric d=4 Yang Mills theory is represented as the integral of the exponential of an equivariantly exact form. Integrating out an overall scale and a U(1) angle the integral is rewritten as (4n-3) fold product of a closed two form. This two form is, formally, a representative of the Euler class of the Instanton moduli space viewed as a principal U(1) bundle, because its pullback under bundel projection is the exterior derivative of an angular one-form.Comment: LaTex, 15 page

    Knizhnik-Zamolodchikov-Bernard equations connected with the eight-vertex model

    Full text link
    Using quasiclassical limit of Baxter's 8 - vertex R - matrix, an elliptic generalization of the Knizhnik-Zamolodchikov equation is constructed. Via Off-Shell Bethe ansatz an integrable representation for this equation is obtained. It is shown that there exists a gauge transformation connecting this equation with Knizhnik-Zamolodchikov-Bernard equation for SU(2)-WZNW model on torus.Comment: 20 pages latex, macro: tcilate

    Integrable Chain Model with Additional Staggered Model Parameter

    Get PDF
    The generalization of the Yang-Baxter equations (YBE) in the presence of Z_2grading along both chain and time directions is presented. An integrable model,based on the XXZ Heisenberg chain with staggered inhomogeneity of someadditional model parameter, is constructed. In the simple case of XX model thelocal Hamiltonian is calculated in the fermionic formulation. Integrableboundary terms are found. It is obvious from the construction that, in the caseof the generalization of the XXZ model, the resulting bulk Hamiltonian has aladder form. This construction can be applied to other known integrable models

    Recursive representation of the torus 1-point conformal block

    Full text link
    The recursive relation for the 1-point conformal block on a torus is derived and used to prove the identities between conformal blocks recently conjectured by R. Poghossian. As an illustration of the efficiency of the recurrence method the modular invariance of the 1-point Liouville correlation function is numerically analyzed.Comment: 14 pages, 1 eps figure, misprints corrected and a reference adde

    Matone's Relation in the Presence of Gravitational Couplings

    Full text link
    The prepotential in N=2 SUSY Yang-Mills theories enjoys remarkable properties. One of the most interesting is its relation to the coordinate on the quantum moduli space u=u= that results into recursion equations for the coefficients of the prepotential due to instantons. In this work we show, with an explicit multi-instanton computation, that this relation holds true at arbitrary winding numbers. Even more interestingly we show that its validity extends to the case in which gravitational corrections are taken into account if the correlators are suitably modified. These results apply also to the cases in which matter in the fundamental and in the adjoint is included. We also check that the expressions we find satisfy the chiral ring relations for the gauge case and compute the first gravitational correction.Comment: 21 page

    Five-dimensional AGT Conjecture and the Deformed Virasoro Algebra

    Full text link
    We study an analog of the AGT relation in five dimensions. We conjecture that the instanton partition function of 5D N=1 pure SU(2) gauge theory coincides with the inner product of the Gaiotto-like state in the deformed Virasoro algebra. In four dimensional case, a relation between the Gaiotto construction and the theory of Braverman and Etingof is also discussed.Comment: 12 pages, reference added, minor corrections (typos, notation changes, etc

    Algebraic Bethe Ansatz for a discrete-state BCS pairing model

    Full text link
    We show in detail how Richardson's exact solution of a discrete-state BCS (DBCS) model can be recovered as a special case of an algebraic Bethe Ansatz solution of the inhomogeneous XXX vertex model with twisted boundary conditions: by implementing the twist using Sklyanin's K-matrix construction and taking the quasiclassical limit, one obtains a complete set of conserved quantities, H_i, from which the DBCS Hamiltonian can be constructed as a second order polynomial. The eigenvalues and eigenstates of the H_i (which reduce to the Gaudin Hamiltonians in the limit of infinitely strong coupling) are exactly known in terms of a set of parameters determined by a set of on-shell Bethe Ansatz equations, which reproduce Richardson's equations for these parameters. We thus clarify that the integrability of the DBCS model is a special case of the integrability of the twisted inhomogeneous XXX vertex model. Furthermore, by considering the twisted inhomogeneous XXZ model and/or choosing a generic polynomial of the H_i as Hamiltonian, more general exactly solvable models can be constructed. -- To make the paper accessible to readers that are not Bethe Ansatz experts, the introductory sections include a self-contained review of those of its feature which are needed here.Comment: 17 pages, 5 figures, submitted to Phys. Rev.
    corecore